Jump to content

Recommended Posts

Posted

This is one optimization problem that I just cant figure out. I'll post what I have...

 

 

A hiker at point A on a straight road wants to reach, in the shortest time, a point B located 6 miles from the road and 10 miles from point A. The hiker's speed on the paved road is 4 mph and only 2 mph off the road. How far should he continue on the road before heading in a straight line for the point B?

 

I am pretty sure I would have to use the pythagorean theorem because if you draw the problem you get a triange with two sides given. Plus I denoted [math] dr/dt [/math] to be the speed on the road which is 4 mph, and [math] do/dt [/math] to be the speed off road which is 2 mph. I just don't know how to find my objective function. Any help would be appreciated.

Posted

You're on the right track. With your drawing, split the problem in 2 parts using an intermediate point P. Express the distance as a function of the distance to P by using the pyth. theorem on the triangle, compute the time necessary to do both parts with the given speeds and then add those two parts.

Posted

I can't check your answer since the question isn't 100% clear to me. Is B located 6 miles under the road, vertically? So the distance between B and the road is 6. And the 10 miles, is that the (straight) distance between A and B or between A and the point on the road which is above B?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.