Jump to content

Recommended Posts

Posted

CELL HYDROPHOBICITY: A MISSED ROLE FOR PROTEINS

 

For a long time, and up to the present, the term hydrophobicity was mostly has been associated chiefly with lipids. The well-known Meyer-Overton rule was always a strong argument in favor of the lipid nature of biomembranes and of the membrane theory of anesthesia. Until the 1960s, to be "hydrophobic" was synonymous with being "lipid", and the hydrophobic properties of the cell were explained by the presence of its lipid membranes, first of all, and primarily the plasma membrane. Indeed, based on these concepts, numerous "lipid" theories of anesthesia were put forward.

 

However, in the 1960s, when studying thermodynamic characteristics of the thermodynamics of protein folding and unfolding, Brandts (3) was the first to prove convincingly that during the folding of a protein molecule, hydrophobic areas are formed internally which are inaccessible to water. Initially the thermodynamics of conformational transitions in proteins was the subject of study by a small group of specialists. However, with time, it has become evident that hydrophobic areas within cells are represented not only by lipids, as this was thought for more than 70 years, but also by proteins. The importance of this reappraisal is emphasized by the fact that, after water, protein is the most abundant of all other constituents, comprising up to 65% of the dry mass of cells, and greatly exceeds the total amount of lipid. What I propose here is that the volume of the hydrophobic protein phase can greatly exceed that of the hydrophobic lipid phase. However, I also recognize that the full significance of this observation has not been understood and seemingly not accepted by contemporary cell physiologists in terms of paradigms and working hypotheses.

 

This theme is continued in the article: Vladimir Matveev. Protoreaction of Protoplasm. Cell. Mol. Biol. 51(8): 715-723, 2005.

 

See full text here:

http://www.actomyosin.spb.ru/protoreaction.htm

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.