Jump to content

Recommended Posts

Posted

The density (Specific Gravity) is a valuable index of chemical composition of alloys. Although, one can calculate the composition of binary alloys of known metals from their densities (Specific Gravities) in straight forward manner, but for alloys having three or more constituents it leads to a mathematically untenable situation as we have more unknowns than the equations. The densities of such multi-component alloys are always associated to a large number of probable compositions. So, mathematically it is not possible to calculate all such probabilities and then to point out authentically with certainty as to which one particular composition does actually belong to the given alloy.

 

We are making an attempt to establish that the ‘Archimedean method’ still holds good and may be employed successfully to determine the compositions of multi-component alloys by decoding their densities into percent elemental compositions, even without prior knowledge of constituent metals. It further suggests that the densities of alloys hold the characteristic feature – the fingerprints of alloys which may be decoded for forecasting the presence of elements and their compositions in n-component alloys.

 

The software we have developed successfully decodes the densities of n-component alloys into elemental percent composition without any prpor knowledge of constituent metals. It automatically detects the presence of the metals in given alloys by decoding their densities.

 

We are making our sincere efforts to compare our theoretical data with experimental results.

 

May anyone help us financially or otherwise in order to complete this task?

rathorebc@yahoo.co.uk

rathorebc@hotmail.com

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.