Kyle Posted November 29, 2006 Posted November 29, 2006 I'm confused about something we learned in Calc today and thought someone could explain it a little. We're doing arc lengths and now the surface area of a solid formed by revolving a curve. Given any function [math]f(x)[/math] revolved about the x axis, We treated the surface area as a lot of circumferences stacked next to each other, with the radius equal to y. My teacher showed us the formula to be [math]\int_a^b f(x)2\pi\,ds\[/math] I understand the concept of ds I think, but I don't understand is why you have to use ds and can't use [math]\int_a^b f(x)2\pi\,dx\[/math]. I pictured this problem as finding the circumference then multiplying it by thickness dx to make a hollow cylinder. Since dx is pretty much nothing, this "cylinder" would have a height of zero and would be just a 2-D circle. We could add up all the circumferences to get a surface area. Why does arc length matter at all when your slices are infinitely thin?
Dave Posted November 30, 2006 Posted November 30, 2006 You can use dx instead of ds if you want to; but you can't simply replace ds by dx, since [imath]ds = \sqrt{1+f'(x)^2} dx[/imath]. Take a look here for a more detailed description.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now