Red888 Posted February 20, 2007 Posted February 20, 2007 These two have caught me out. One because its a multiplication of absolute values and the other because its a a graph, but... Numbers: 3D and 4 Any help would be very much appreciated, thank you.
hotcommodity Posted February 20, 2007 Posted February 20, 2007 You want to treat part 3d. as if there were absolute value bars outside of both sums being multiplied. So you would have | (x-1)*(x+2) | = 3. Now you can just multiply the two terms and get |x^2 +2x -x -2 |=3, now just add like-terms and solve. For part 4, one way to sketch a graph would be to simply plot points on an x-y graph. Start by picking whole numbers of x, both negative and positive and close to 0, 0 included. Remember if you get a negative value in the absolute value bars to simply make it positive. The line you graph should never go below the x-axis. I hope that helps.
Red888 Posted February 23, 2007 Author Posted February 23, 2007 Thank you very much. I appreciate your imput.
Ramsey2879 Posted February 26, 2007 Posted February 26, 2007 You want to treat part 3d. as if there were absolute value bars outside of both sums being multiplied. So you would have | (x-1)*(x+2) | = 3. Now you can just multiply the two terms and get |x^2 +2x -x -2 |=3, now just add like-terms and solve. You can also solve if you substitute a+b for x and set a-1 = -(a+2). This gives a = -1/2. So (-3/2 + b)*(3/2+b) = +/- 3 gives b = +/-sqrt{21/4} since x is real. x = a+b = (-1+/-sqrt{21})/2
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now