mooeypoo Posted September 13, 2008 Posted September 13, 2008 Hey again, Okay, I have a hw problem that asks for a solution to an integral using 2 methods. I've solved them both but got two slightly different answers, and I can't figure out where I went wrong.... help! Estimate the integral [math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r [/math] (over a sphere with radius R, centered on the origin) by two different methods: (a) carrying out the divergence operation (b) integrating by parts. So here are my solutions, please help me out, it's all VERY new and I had to go through the book about 3 times before I could understand what it is they're doing. I thought I did well, but.. well, apparently I didn't, since the answers don't match. (a) [math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r = \int e^{-ar} 4\pi\delta^3® d^3r [/math] Since we integrate over all space, r is in the domain of the integration, the delta function is equal to 1, and we solve for f(a) which is f(0), because the function is delta (r-0). So: [math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r = e^{-a*0}*4\pi = 4\pi[/math] (b) [math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r [/math] We know that: [math] \int f(\bigtriangledown \cdot A) d\tau = -\int_{V} A \cdot (\bigtriangledown f) d\tau + \oint_{S} fA \cdot da [/math] Where [math] f(\bigtriangledown \cdot A) = e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right) [/math] So: [math] \int e^{-ar} \left( \bigtriangledown \cdot \frac{\hat{r}}{r^2} \right) d^3r =[/math] [math] - \int_{V} \left( \frac{\hat{r}}{r^2} \cdot \left( \bigtriangledown e^{-ar} \right) \right) d \tau + \oint_{S} \left( \frac{e^{-ar}}{r^2}\hat{r} \right) \cdot da = [/math] [math] - \int_{V} \left( \frac{1}{r^2}\hat{r} \right) \cdot \left( e^{-ar}\hat{r} \right) d\tau + \oint_{S} \left( \frac{e^{-ar}}{r^2} \right) \cdot da= [/math] [math] - \int_{V} \left( \frac{e^{-ar}}{r^2} \right) r^2 \sin{\theta} dr d\theta d\phi + \oint_{S} \left( \frac{e^{-ar}}{r^2} \right) r^2 \sin{\theta} dr d\theta d\phi = [/math] [math] \int^{R}_{0} e^{-ar}dr \int^{\pi}_{0} \sin{\theta} d\theta \int^{2\pi}_{0} d\phi + \oint_{R} e^{-ar} \int^{pi}_{0} \sin{\theta} d\theta\int^{2\pi}_{0} \phi d\phi = [/math] [math] \left( \frac{e^{-ar}}{-a} \right) |^{R}_{0} (-\cos{\theta})|^{\pi}_{0}\phi |^{2\pi}_{0} + \left( \frac{e^{-aR}}{-a} \right) (- \cos{\theta}) |^{\pi}_{0}\phi |^{2\pi}_{0}= [/math] [math] \left( \dfrac{1-e^{-aR}}{-a} \right) 2*2\pi + \left( \dfrac{e^{-aR}}{-a} \right)2*2\pi [/math] [math] = - \dfrac{4\pi}{a} [/math] Meh!!! Help? What did I do wrong? Is my method even right???? help help I'm so confused... ~moo
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now