square173205 Posted January 14, 2009 Posted January 14, 2009 Generally the function having zero points or poles with non-integer order such as f(z) = (z-a)^(1.5+i0.3) must be dealt with on appropriate Riemann surface. I tried to extend the argument principle for such functions on a single sheet of Riemann surface and got a formula similar to that of ordinary argument principle. Using that formula the winding number of f(z) = (z-a)^(1.5+i0.3) around the origin is expressed as 1.5+i0.3. For details, visit: http://hecoaustralia.fortunecity.com/argument/argument.htm
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now