triclino Posted November 25, 2009 Posted November 25, 2009 I presented a professor with the following proof: Prove that the empty set is closed. Proof : By definition : [math]\emptyset[/math] is closed <=> cl[math]\emptyset\subseteq\emptyset[/math] <=> ([math]x\in[/math] cl [math]\emptyset[/math]=>[math]x\in\emptyset[/math]) cl [math]\emptyset[/math] is the closure of the empty set,and B(x,r) is a ball of radius r round x But ,by definition again [math]x\in[/math]cl [math]\emptyset[/math] <=> for all r>0 ,B(x,r)[math]\cap\emptyset\neq\emptyset[/math]....................................................................1 But , B(x,r)[math]\cap\emptyset =\emptyset[/math] => (B(x,r)[math]\cap\emptyset =\emptyset[/math] or [math]x\in\emptyset[/math]) <=> (B(x,r)[math]\cap\emptyset\neq\emptyset[/math] =>[math]x\in\emptyset[/math]) And using (1) we get : [math]x\in\emptyset[/math] Thus ,we have proved: ([math]x\in[/math] cl [math]\emptyset[/math]=>[math]x\in\emptyset[/math]) And the empty set is closed. The professor did not accept the proof as correct . Do you agree with him??
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now