Jump to content

Recommended Posts

Posted

Given that:

 

1) A function [math] f: D_{f}\subset R\rightarrow R[/math] is uniformly continuous iff for any pair of sequences {[math]x_{n}[/math]} {[math]y_{n}[/math]} in [math] D_{f}[/math] ( = domain of f),

 

[math]lim_{n\to\infty}|x_{n}-y_{n}| = 0[/math][math]\Longrightarrow lim_{n\to\infty}|f(x_{n})-f(y_{n})| = 0[/math],

 

Determine if the function f(x) = [math]x^2[/math] is uniformly continuous or not.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.