alejandrito20 Posted April 27, 2010 Posted April 27, 2010 there is correct the expresion [math]\int^{-\pi+\epsilon}_{\pi-\epsilon} d\theta[/math]....where [math]\theta[/math] is a angular coordinate between [math](-\pi,\pi)[/math]....¿what means this?... i believe that this mean that the angular coordinate theta runs from [math]\pi-\epsilon[/math] to [math]-\pi+\epsilon[/math] in the sense anti clock (figure)
cosine Posted May 9, 2010 Posted May 9, 2010 I see why you might say that, but no it is not like that. You can only take Reimann integrals over continuous domains, but because your theta goes from (-pi, pi), you're not allowed to jump from pi to -pi! If you could do the reimann sum as you were saying, then you would necessarily have: [math] \int^{-\pi+\epsilon}_{\pi-\epsilon} d\theta = -\int^{\pi-\epsilon}_{-\pi+\epsilon} d\theta [/math] However, all is not lost because the region you highlighted is just: [math] \int^{-\pi+\epsilon}_{-\pi} d\theta + \int^{\pi}_{\pi-\epsilon} d\theta [/math]
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now