Jump to content

Recommended Posts

Posted

I've been studying some geometry and I've got a basic question:

 

The Riemann Curvature Tensor can be written using either the first fundamental form ([math]g_{\alpha\beta}[/math]) or the second fundamental form ([math]b_{\alpha\beta}[/math]), as indicated by the Codazzi-Peterson and Gauss equations. So I was wondering, is there a difference in the geometric information stored in both forms, or are they completely different, i.e. given one of these descriptions of a geometry (say [math]b_{\alpha\beta}[/math]), is it possible to find the other (say [math]g_{\alpha\beta}[/math])?

 

If not, what is the added value of each of the fundamental forms over the other?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.