estro Posted June 16, 2010 Posted June 16, 2010 (edited) 1. The problem statement, all variables and given/known data [math]\mbox{Check whether } \sum_{n=0}^\infty \frac {1}{e^{|x-n|}} \mbox{ is uniform convergent where its normaly convergent}[/math] 3. The attempt at a solution [math]\mbox{I choose } \epsilon = 1/2[/math] [math]a_n=\frac {1}{e^{|x-n|}}\ ,\ b_n= \frac {1}{n^2}[/math] [math]\lim_{n\rightarrow\infty} \frac {a_n}{b_n}=0\ \Rightarrow\ \sum_{n=0}^\infty a_n \mbox{ is convergent for all x }\in\ R. [/math] [math]f_k(x)=\sum_{n=0}^{k} a_n\ ,\ f(x)=\lim_{k\rightarrow\infty} \sum_{n=0}^{k} a_n[/math] [math] x_n=n\ \Rightarrow\ \sup_{x_n \in R}|f_k(x_n)-f(x_n)|\geq \sum_{n=k+1}^\infty \frac {1} {e^{|n-n|}}=1>\epsilon[/math] [math]\Rightarrow \mbox { is not uniformly convergent } \in R[/math] What do you think? [i left out technical details to present my idea more clearly.] Edited June 17, 2010 by estro
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now