e(ho0n3 Posted September 15, 2004 Posted September 15, 2004 Here is a simple statement which I've yet to prove satisfactorily: Adding/deleting loops, parallel edges and edges in series does not affect the planarity of a graph. If a graph is planar, then removing anything from it does not create any edge crossings, so the graph remains planar. If a graph is not planar, then adding anything to it will or will not create any edge crosssings, so the graph remains unplanar. Now I have to show that adding (removing) loops, parallel edges and edges in series does not affect the planarity of a(n) planar (unplanar respectively) graph. This is were I stopped. I'm trying to think of a good argument which shows that a planar graph remains planar after the addition of loops. I'm guessing I'll have to describe a process that can add loops without creating edge crossings. Any tips?
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now