Jump to content

Energy conservation in Electrodynamics


Recommended Posts

Let us suppose that we have a known electromagnetic wave-train of finite size propagating in a certain direction. On its way there is a probe charge. This EMW is an external field for the charge. The EMW has a certain energy-momentum (integral over the space). After action on the probe charge the wave continues its way away. In the end we have the energy of the initial wave (displaced somewhere), the kinetic energy of the charge (hopefully it starts moving), and the energy of the radiated EMF. Thus the total energy is not conserved, is it?

Link to comment
Share on other sites

  • 3 weeks later...

EDIT: I can emit a half-period long wave from a radio-transmitter: [math]E(t)=E_0 sin(\Omega t), 0 < t < \pi/ \Omega [/math]. Then the final charge velocity will be clearly different from zero:

 

[math]ma=F(t), v(t>\pi/ \Omega)=\int_{0}^{t}F(t')dt'=\frac{2qE_0}{m\Omega}[/math].

 

In addition, the charge itself radiates some new wave during acceleration period. The radiated energy is only a small fraction of [math]\frac{mv^2}{2}[/math]. What can guarantee that the total energy remains the same?

Edited by Bob_for_short
Link to comment
Share on other sites

EDIT: I can emit a half-period long wave from a radio-transmitter: [math]E(t)=E_0 sin(\Omega t), 0 < t < \pi/ \Omega [/math]. Then the final charge velocity will be clearly different from zero:

 

[math]ma=F(t), v(t>\pi/ \Omega)=\int_{0}^{t}F(t')dt'=\frac{2qE_0}{m\Omega}[/math].

 

In addition, the charge itself radiates some new wave during acceleration period. The radiated energy is only a small fraction of [math]\frac{mv^2}{2}[/math]. What can guarantee that the total energy remains the same?

 

Isn't that just the way it works? If the final charge velocity is not zero, then the initial wave train has less energy. It has done work and transferred momentum.

Link to comment
Share on other sites

Isn't that just the way it works? If the final charge velocity is not zero, then the initial wave train has less energy. It has done work and transferred momentum.

 

Yes, the incident wave-train can get weaker if it is accompanied with the radiated wave and the resulting wave amplitude (=> energy-momentum) becomes smaller. I just do not see it immediately.

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.