cuti3panda Posted October 7, 2004 Posted October 7, 2004 1)Let G be an Abelian group and let H={g in G/ IgI divides 12}. Prove that H is a subgroup of G. Is there anything special about 12 here? Would your proof be valid if 12 were replaced by some other positive integer? State the general result? 2) Find a collection of distint subgroup <a1>, <a2>,.....,<an> of Z240 with the proberty that <a1> C <a2> C.....C <an> with n as large as possible. if you have time, drop me a line anyone!!!
matt grime Posted October 8, 2004 Posted October 8, 2004 What is the order of xy if x,y are elements of finite abelian group with ord(x)= p and ord(y)=q?
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now