Jump to content

limit


Recommended Posts

Hello

The problem is

find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where

 

[math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math]

 

I tried to do:

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math]

 

[math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math]

 

but the Answer is [math]\lambda \in {0,2}[/math]

Edited by alejandrito20
Link to comment
Share on other sites

Look at your third line of equations; you simplified your factorials incorrectly.

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{(2n+1)(2n)...}{(2n+3)(2n+2)(2n+1)...1}[/math]

 

If you correct this you should notice that it works out correctly. However, don't forget to check your endpoints.

Edited by DJBruce
Link to comment
Share on other sites

Hello

The problem is

find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where

 

[math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math]

 

I tried to do:

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math]

 

[math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math]

 

but the Answer is [math]\lambda \in {0,2}[/math]

 

 

 

If [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math]

 

Then

 

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]= (\frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]= (\frac{\lambda}{1}\frac{(n+1)}{1})^2\frac{(1)}{(2n+3)(2n+2)} [/math]

 

[math]= \frac{\lambda^2 (n^2 +2n +1)}{4n^2 +10n +6)} [/math]

 

[math] = \frac {\lambda ^2}{4} \frac {n^2 +2n +1} {n^2 + \frac{5n}{2} + \frac {3}{4}}[/math] [math] \rightarrow \frac {\lambda ^2}{4}[/math] as [math] n \rightarrow \infty[/math]

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.