alejandrito20 Posted May 14, 2011 Share Posted May 14, 2011 (edited) Hello The problem is find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math] I tried to do: [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math] [math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math] but the Answer is [math]\lambda \in {0,2}[/math] Edited May 14, 2011 by alejandrito20 Link to comment Share on other sites More sharing options...
DJBruce Posted May 14, 2011 Share Posted May 14, 2011 (edited) Look at your third line of equations; you simplified your factorials incorrectly. [math]\frac{(2n+1)!}{(2n+3)!}= \frac{(2n+1)(2n)...}{(2n+3)(2n+2)(2n+1)...1}[/math] If you correct this you should notice that it works out correctly. However, don't forget to check your endpoints. Edited May 14, 2011 by DJBruce 1 Link to comment Share on other sites More sharing options...
DrRocket Posted May 14, 2011 Share Posted May 14, 2011 Hello The problem is find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math] I tried to do: [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math] [math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math] but the Answer is [math]\lambda \in {0,2}[/math] If [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] Then [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]= (\frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]= (\frac{\lambda}{1}\frac{(n+1)}{1})^2\frac{(1)}{(2n+3)(2n+2)} [/math] [math]= \frac{\lambda^2 (n^2 +2n +1)}{4n^2 +10n +6)} [/math] [math] = \frac {\lambda ^2}{4} \frac {n^2 +2n +1} {n^2 + \frac{5n}{2} + \frac {3}{4}}[/math] [math] \rightarrow \frac {\lambda ^2}{4}[/math] as [math] n \rightarrow \infty[/math] 1 Link to comment Share on other sites More sharing options...
alejandrito20 Posted May 14, 2011 Author Share Posted May 14, 2011 thanks :=) Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now