alejandrito20 Posted May 14, 2011 Posted May 14, 2011 (edited) Hello The problem is find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math] I tried to do: [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math] [math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math] but the Answer is [math]\lambda \in {0,2}[/math] Edited May 14, 2011 by alejandrito20
DJBruce Posted May 14, 2011 Posted May 14, 2011 (edited) Look at your third line of equations; you simplified your factorials incorrectly. [math]\frac{(2n+1)!}{(2n+3)!}= \frac{(2n+1)(2n)...}{(2n+3)(2n+2)(2n+1)...1}[/math] If you correct this you should notice that it works out correctly. However, don't forget to check your endpoints. Edited May 14, 2011 by DJBruce 1
DrRocket Posted May 14, 2011 Posted May 14, 2011 Hello The problem is find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math] I tried to do: [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math] [math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math] but the Answer is [math]\lambda \in {0,2}[/math] If [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] Then [math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math] [math]= (\frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math] [math]= (\frac{\lambda}{1}\frac{(n+1)}{1})^2\frac{(1)}{(2n+3)(2n+2)} [/math] [math]= \frac{\lambda^2 (n^2 +2n +1)}{4n^2 +10n +6)} [/math] [math] = \frac {\lambda ^2}{4} \frac {n^2 +2n +1} {n^2 + \frac{5n}{2} + \frac {3}{4}}[/math] [math] \rightarrow \frac {\lambda ^2}{4}[/math] as [math] n \rightarrow \infty[/math] 1
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now