alejandrito20 Posted May 23, 2011 Posted May 23, 2011 (edited) In a space time [math]5D[/math], the action for the brane [math]4D[/math] is: [math] \int dx^4 \sqrt{-h}[/math] In the Randall Sundrum the action for the hidden brane is: [math] V_0\int dx^4 \sqrt{-h}[/math], where [math]V_0[/math] is the tension on the brane hidden. follow the stress energy tensor [math] T_{MN}= V_0 h_{uv} \delta^u_M \delta^v_N \delta(\phi)[/math], where [math]\phi[/math] is the extra dimention. In other paper, where [math]T_{MN}[/math], for example in the friedman equation in http://arxiv.org/abs/hep-th/0303095v1 (page 6)... [math] T_{00}= -\rho \delta(\phi)[/math] [math] T_{ii}= p \delta(\phi)[/math] the other component are zero. I understand thar [math]\rho , p[/math] are energy density and presion If , i use other embedding my energy stress tensor is [math] T_{00}= - \delta(\phi)[/math] [math] T_{ii}= \delta(\phi)[/math] [math] T_{0 \phi}= \delta(\phi)[/math] [math] T_{\phi \phi}= \delta(\phi)[/math] ¿can i to multiply the each component of the stress tensor by differents constants???...for example: [math] T_{00}= - k_1 \delta(\phi)[/math] [math] T_{ii}= k_2 \delta(\phi)[/math] [math] T_{0 \phi}= k_3 \delta(\phi)[/math] [math] T_{\phi \phi}= k_4 \delta(\phi)[/math] Edited May 23, 2011 by alejandrito20
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now