giorgio Posted August 19, 2011 Posted August 19, 2011 (edited) Hi It is well knowm by the theorem of the reminder that: [math]D(x)=d(x)q(x)+r(x)[/math] In this example: .......................If [math](2x^{119}+1)/(x^2-x+1)[/math] then figure out the reminder. Therefore I can afirm that the reminder has the form of :[math]r(x)=ax+b[/math], because [math]d(x)>r(x)[/math] and [math]d(x)=x^2-x+1[/math] And the original problem could be written as: ..................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b[/math].........(I) To this point I need two solution of:[math]d(x)=0[/math] so I can find the values of a and b. According to what I think: ...............If [math](2x^{119}+1) = D(x)[/math] and [math]d(x)=(x^2-x+1)[/math] so in order to find the solution :[math] x^2-x+1=0[/math]......(II) .............................[math](x+1)(x^2-x+1)=0[/math] ....................................[math]x^3+1=0 [/math] ..............................................[math]x^3=-1 [/math]........(III) .................................. replacing (III) on [math]D(x)[/math]: ....................................[math]2(-1)x^2+1= -2x^2+1 [/math] .................................but in (II) we'll have: [math] -x^2=-x+1[/math] ......................................so [math]-2x^2+1=-2x+3[/math] ........................................finally [math]-2x+3=r(x) [/math] ........................................[math]ax+b=-2x+3[/math] I just found the above anwer substituting values for another, but really would like to know if I can find it in the form (I) below: ...................................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b.............(I)[/math] ........................................and if I try to fatorise the way I did: ..........................................[math]2x^{119}+1=(x^2-x+1)(x+1)(x+1)^{-1}q(x)+ax+b[/math] ...........................................[math]2x^{119}+1=(x^3+1)(x+1)^{-1}q(x)+ax+b[/math] .................................................When I change x=-1 ............................................... the expression: [math](x+1)^{-1}[/math] has no meaning. I will appretiate if anyone can remark me if I'm making or if I made a mistake in my logic(method) Thanks in advance, and excuse me if my coding is wrond. Edited August 19, 2011 by giorgio
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now