Darío Posted November 10, 2011 Share Posted November 10, 2011 Is required to prove the derivative of [latex]e^x[/latex] by definition, so [latex]\displaystyle\frac{d}{dx}(e^x)=\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x +x}-e^x}{\Delta x}}=e^x\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x}-1}{\Delta x}}[/latex] I can also express the exponential function as [latex]e^{\Delta x}=\sum_{n=0}^{\infty}{\displaystyle\frac{{\Delta x}^n}{n!}}[/latex] [latex]e^{\Delta x}-1=\sum_{n=1}^{\infty}{\displaystyle\frac{{(\Delta x)}^n}{n!}}=\sum_{n=0}^{\infty}{\displaystyle\frac{{(\Delta x)}^{n+1}}{(n+1)!}}[/latex] How i can continue? Link to comment Share on other sites More sharing options...
mathematic Posted November 11, 2011 Share Posted November 11, 2011 After division by Δx, the first term is 1, while the remaining terms -> 0. Link to comment Share on other sites More sharing options...
triclino Posted December 18, 2011 Share Posted December 18, 2011 Is required to prove the derivative of [latex]e^x[/latex] by definition, so [latex]\displaystyle\frac{d}{dx}(e^x)=\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x +x}-e^x}{\Delta x}}=e^x\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x}-1}{\Delta x}}[/latex] I can also express the exponential function as [latex]e^{\Delta x}=\sum_{n=0}^{\infty}{\displaystyle\frac{{\Delta x}^n}{n!}}[/latex] [latex]e^{\Delta x}-1=\sum_{n=1}^{\infty}{\displaystyle\frac{{(\Delta x)}^n}{n!}}=\sum_{n=0}^{\infty}{\displaystyle\frac{{(\Delta x)}^{n+1}}{(n+1)!}}[/latex] How i can continue? We have that: [math]lim_{x\to 0}\frac{e^x-1}{x} = 1[/math] if 0<x<1,then we have:[math]1\leq\frac{e^x-1}{x}\leq\frac{1}{1-x}[/math]....................................................................1 if -1<x<0 ,then we have: [math]\frac{1}{1-x}\leq\frac{e^x-1}{x}\leq1[/math]..................................................................2 And we observe that : [math]\lim_{x\to 0}\frac{1}{1-x} = 1[/math] ,hence [math]lim_{x\to 0}\frac{e^x-1}{x} = 1[/math] The proof of the inequalities (1) and (2) is based on the fact that : [math] \forall x(x\in R\Longrightarrow e^x\geq 1+x)[/math] Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now