Darío Posted November 10, 2011 Posted November 10, 2011 Is required to prove the derivative of [latex]e^x[/latex] by definition, so [latex]\displaystyle\frac{d}{dx}(e^x)=\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x +x}-e^x}{\Delta x}}=e^x\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x}-1}{\Delta x}}[/latex] I can also express the exponential function as [latex]e^{\Delta x}=\sum_{n=0}^{\infty}{\displaystyle\frac{{\Delta x}^n}{n!}}[/latex] [latex]e^{\Delta x}-1=\sum_{n=1}^{\infty}{\displaystyle\frac{{(\Delta x)}^n}{n!}}=\sum_{n=0}^{\infty}{\displaystyle\frac{{(\Delta x)}^{n+1}}{(n+1)!}}[/latex] How i can continue?
mathematic Posted November 11, 2011 Posted November 11, 2011 After division by Δx, the first term is 1, while the remaining terms -> 0.
triclino Posted December 18, 2011 Posted December 18, 2011 Is required to prove the derivative of [latex]e^x[/latex] by definition, so [latex]\displaystyle\frac{d}{dx}(e^x)=\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x +x}-e^x}{\Delta x}}=e^x\lim_{\Delta x \to 0}{\displaystyle\frac{e^{\Delta x}-1}{\Delta x}}[/latex] I can also express the exponential function as [latex]e^{\Delta x}=\sum_{n=0}^{\infty}{\displaystyle\frac{{\Delta x}^n}{n!}}[/latex] [latex]e^{\Delta x}-1=\sum_{n=1}^{\infty}{\displaystyle\frac{{(\Delta x)}^n}{n!}}=\sum_{n=0}^{\infty}{\displaystyle\frac{{(\Delta x)}^{n+1}}{(n+1)!}}[/latex] How i can continue? We have that: [math]lim_{x\to 0}\frac{e^x-1}{x} = 1[/math] if 0<x<1,then we have:[math]1\leq\frac{e^x-1}{x}\leq\frac{1}{1-x}[/math]....................................................................1 if -1<x<0 ,then we have: [math]\frac{1}{1-x}\leq\frac{e^x-1}{x}\leq1[/math]..................................................................2 And we observe that : [math]\lim_{x\to 0}\frac{1}{1-x} = 1[/math] ,hence [math]lim_{x\to 0}\frac{e^x-1}{x} = 1[/math] The proof of the inequalities (1) and (2) is based on the fact that : [math] \forall x(x\in R\Longrightarrow e^x\geq 1+x)[/math]
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now