Vastor Posted February 11, 2012 Posted February 11, 2012 (edited) The equation [math](px)^2 + 3qx + 4 = 0 [/math] has two equal roots. Given that [math]p > 0[/math] and [math]q > 0[/math], find [math]p : q[/math]. my progression:- [math]p^2x^2 + 3qx + 4 = 0 [/math] where [math]x = a[/math] (two equal roots) [math](x-a)^2 = 0[/math] [math]x^2 - 2ax + a^2 = 0[/math] compare [math]p^2x^2 + 3qx + 4 = 0 [/math] [math]a^2 = 4[/math] [math]a = \pm2[/math] if [math]a = 2[/math] [math]-2a = 3q[/math] (compare) [math]-4 = 3q[/math] [math]q = \frac{-4}{3}[/math] [math]\pm[/math] effect ( if a = -2) [math]q = \pm\frac{4}{3}[/math] but, q > 0, so no minus [math]q = \frac{4}{3}[/math] [math]p^2x^2 + 4x + 4 = 0[/math] discriminant (two equal roots) [math]4^2 - 4(p^2)(4) = 0[/math] [math]16- 16p^2 = 0[/math] [math] p = \pm 1[/math] but, p > 0, so no minus [math] p = 1[/math] answer on the book [math]p : q = 3 : 4[/math] anyone can help? edit: p^2 + 3qx + 4 = 0, sorry about the typo :/ Edited February 11, 2012 by Vastor
Schrödinger's hat Posted February 11, 2012 Posted February 11, 2012 Didn't read much further than this: [math]x^2 - 2ax + a^2 = 0[/math] compare [math]p^2 + 3qx + 4 = 0 [/math] But you missed an [math]x^2[/math] and had a couple of odd things on later lines that looked related. Try getting the given equation to look more like your expansion of [math](x-a)^2[/math] [math]x^2 + \frac{3q}{p^2}x + \frac{4}{p^2} = 0[/math] So: [math] \frac{3q}{2p^2} = a [/math] and [math] \frac{\pm 2}{p} = a[/math] [math]\implies \frac{3q}{2p^2} = \frac{\pm 2}{p}\; \implies\; 3q = \pm 4p[/math] The [math]\pm[/math] must be + or we don't have both p and q > 0.
Vastor Posted February 11, 2012 Author Posted February 11, 2012 (edited) Didn't read much further than this: But you missed an [math]x^2[/math] and had a couple of odd things on later lines that looked related. not really, just typo transferring from the paper that I used to calculate, and not missing any [math]x^2[/math] there Try getting the given equation to look more like your expansion of [math](x-a)^2[/math] [math]x^2 + \frac{3q}{p^2}x + \frac{4}{p^2} = 0[/math] So: [math] \frac{3q}{2p^2} = a [/math] and [math] \frac{\pm 2}{p} = a[/math] [math]\implies \frac{3q}{2p^2} = \frac{\pm 2}{p}\; \implies\; 3q = \pm 4p[/math] The [math]\pm[/math] must be + or we don't have both p and q > 0. at [math] \frac{\pm 2}{p} = a[/math] why not the p has plusminus value when squareroot it? EDIT : Ignore this post Edited February 11, 2012 by Vastor
DrRocket Posted February 11, 2012 Posted February 11, 2012 (edited) The equation [math](px)^2 + 3qx + 4 = 0 [/math] has two equal roots. Given that [math]p > 0[/math] and [math]q > 0[/math], find [math]p : q[/math]. [math](x-a)^2 = 0[/math] [math]C(x-a)^2 = 0[/math] Edited February 11, 2012 by DrRocket
Vastor Posted February 11, 2012 Author Posted February 11, 2012 [math]C(x-a)^2 = 0[/math] simple answer that explain all, thnx hope I'm doing good now:- [math]C(x-a)^2[/math] [math]Cx^2 - 2aCx + Ca^2 = 0 [/math] compare [math]p^2x^2 - 3qx +4 = 0[/math] [math]C = p^2[/math] so, [math]p^2a^2 = 4[/math] [math]a^2 = \frac{4}{p^2}[/math] [math]a = \frac{\pm2}{p}[/math] then, [math]-2aC = -q[/math] [math]2(\frac{\pm2}{p})(p^2) = 3q[/math] p, q > 0 so, [math]2(\frac{2}{p})(p^2) = 3q[/math] [math]4p = 3q[/math] [math]\frac{4}{3} = \frac{q}{p}[/math] another problem! given that [math]a[/math] and [math]b[/math] are the roots of the equation [math]3x^2 + 7x - 6 = 0[/math] where [math]a > 0[/math] and [math]b < 0[/math]. Form a quadratic equation which has the roots [math]a + 3[/math] and [math]b-2[/math]. my progression:- [math]3x^2 + 7x - 6 = 0[/math] [math]x^2 +\frac{7}{3}x - 2 = 0[/math] compare [math]x^2 - (a+b)x + ab = 0[/math] so, [math]a+b = -\frac{7}{3}[/math] & [math]ab = -2 [/math] for, [math]ab = -2 [/math] [math]a = -\frac{2}{b} [/math] and then, for [math]a+b = -\frac{7}{3}[/math] [math] -\frac{2}{b}+b = -\frac{7}{3}[/math] [math] b = \frac{2}{b} - \frac{7}{3} [/math] [math] b = \frac{6 - 7b}{3b} [/math] [math]3b^2 + 7b - 6 = 0[/math] [math](3b - 2)(b + 3) = 0[/math] [math]b = \frac{2}{3}[/math] and [math]b = -3[/math] because [math]b < 0[/math], so [math]b = -3[/math] only. after that, for [math]a = -\frac{2}{b} [/math] [math]a = \frac{2}{3} [/math] then, [math]x^2 - (a+3 + b-2)x + (a+3)(b-2) = 0[/math] [math]x^2 -(-\frac{7}{3} + 3-2)x + (ab+3b - 2a-6) = 0[/math] [math]x^2 + \frac{4}{3}x +(-8 + 3b - 2a) = 0[/math] [math]x^2 + \frac{4}{3}x +(-8 + 3(-3) - 2(\frac{2}{3})) = 0[/math] [math]x^2 + \frac{4}{3}x +(-17 - (\frac{4}{3})) = 0[/math] [math]x^2 + \frac{4}{3}x - \frac{55}{3} = 0[/math] [math]3x^2 + 4x - 55 = 0[/math] and the answer is [math]3x^2 + 4x - 55 = 0[/math] yes, it's the same but I just can't figured out how does the [math]b = \frac{2}{3} = a[/math] or it's just a coincidence?!
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now