shah_nosrat Posted March 12, 2012 Posted March 12, 2012 Hi, I came across this theorem and decided to prove it, as follows: Theorem: A set [math]A \subseteq R[/math] is bounded if and only if it is bounded from above and below. I would like the prove the converse of the above statement; If a set [math]A \subseteq R[/math]is bounded from above and below, then it is bounded. Let [math]M = |M_{1}| + |M_{2}|[/math]and using this preliminary result I proved earlier [math]-|a| \leq a \leq |a|[/math]. Now, [math]\forall a \in A[/math] we have [math] a \leq M_{1}[/math] ---> definition of bounded from above. and [math] M_{2} \leq a[/math] ---> definition of bounded from below. Using the result: [math]-|a| \leq a \leq |a|[/math]. Since [math]M = |M_{1}| + |M_{2}|[/math] is the sum of absolute value of [math]|M_{1}|[/math] and [math]|M_{2}|[/math], it is a big number. (trying to convince myself). Also, [math]-M = -(|M_{1}| + |M_{2}|)[/math], This is on the opposite of the spectrum. Now, [math]-M \leq -|M_{2}| \leq M_{2} \leq -|a| \leq a \leq |a| \leq M_{1} \leq |M_{1}| \leq M [/math]. [math]M = |M_{1}| + |M_{2}| \geq |M_{1} + M_{2}| \geq 0 [/math] ---> Which shows that M is positive by using the triangle inequality. Hence, [math]-M \leq a \leq M[/math]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I'm excited for this proof, hopefully it's correct. Your help is once again appreciated.
kavlas Posted May 15, 2012 Posted May 15, 2012 (edited) Hi, I came across this theorem and decided to prove it, as follows: Theorem: A set [math]A \subseteq R[/math] is bounded if and only if it is bounded from above and below. I would like the prove the converse of the above statement; If a set [math]A \subseteq R[/math]is bounded from above and below, then it is bounded. Let [math]M = |M_{1}| + |M_{2}|[/math]and using this preliminary result I proved earlier [math]-|a| \leq a \leq |a|[/math]. Now, [math]\forall a \in A[/math] we have [math] a \leq M_{1}[/math] ---> definition of bounded from above. and [math] M_{2} \leq a[/math] ---> definition of bounded from below. Using the result: [math]-|a| \leq a \leq |a|[/math]. Since [math]M = |M_{1}| + |M_{2}|[/math] is the sum of absolute value of [math]|M_{1}|[/math] and [math]|M_{2}|[/math], it is a big number. (trying to convince myself). Also, [math]-M = -(|M_{1}| + |M_{2}|)[/math], This is on the opposite of the spectrum. Now, [math]-M \leq -|M_{2}| \leq M_{2} \leq -|a| \leq a \leq |a| \leq M_{1} \leq |M_{1}| \leq M [/math]. [math]M = |M_{1}| + |M_{2}| \geq |M_{1} + M_{2}| \geq 0 [/math] ---> Which shows that M is positive by using the triangle inequality. Hence, [math]-M \leq a \leq M[/math]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I'm excited for this proof, hopefully it's correct. Your help is once again appreciated. yes but you do not show how: [math]-M\leq -|M_{2}|[/math]? Also how do you know that:[math]M_{2} \leq -|a|[/math] ?? Edited May 15, 2012 by kavlas
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now