KManfredas Posted April 17, 2012 Posted April 17, 2012 Hi there, I have an optimization problem and I could really use your help. The problem is related to computer vision and machine learning and it consists in identity matching. I have a person in a video which I represent by a set of features, like color, position in the video, compactness etc. I can follow this person in the video for a while, but then the person interacts with another person and it is impossible to distinguish which person is which. At a later point in time, the two people part ways and I am able to distinguish again the individuals and extract the new set of features for both of them. Now I want to establish the pervious identities of the newly detected people. For this I implement a Bayesian Network and I use the Bayes probability to determine the similarity between the 'old' and 'new' persons. Time T T+1 T+2 Person A X O Person B Y Problem X = A, Y = B or X = B, Y = A? My probability is: P(X = A| NewObservations) = ( P(NewObservations|X = A) * P(X = A) ) / P(NewObservations) which reduces to: P(X = A| NewObservations) = P(NewObservations|X = A), as the priori probabilities are equal (1/2). I compute the probability as a weighted product of the features probability: P(NewObservations|X = A) = WeightHeight * P(HeightA| X = A) * WeightColor * P(Colorx|X = A) * Weightcompactness * P(Compactnessx|X = A) *Weightposition * P(Positionx|X = A) My problem is to determine the weights for each feature in order to obtain the best results. For this I took a training set consisting of features of the same person at time T and T+5(frames). Then I tried to maximize the probability of P(X = A| NewObservations), knowing that I am looking at the same person. The constrains for the weights are: 0< weightX < 1 and weight1+weight2+weight3+weight4 = 1. I used the Nelder-Mean optimisation algorithm. After a couple of iterations (3-5) the algorithm simply gives me the highest weight allowed by the constrains (0.999999..) for the highest feature probability, while the other weights go to minimum (0.00..01). Am I missing anything? Is there another approach for this problem?
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now