IsaacAsimov Posted June 5, 2012 Posted June 5, 2012 [math] \text {Proof that } a^2=b^3 \text { has solutions}, a, b = I > 1 [/math] [math] a^2=b^3 (1) [/math] [math] \sqrt{a^2}=\sqrt{b^3} [/math] [math] a=b^\frac{3}{2} [/math] [math] a=\sqrt{b}^3 (2) [/math] [math] b=4: (2) a=\sqrt{4}^3 [/math] [math] =2^3 [/math] [math] =8 [/math] [math] (1) a^2=b^3 [/math] [math] 8^2=4^3 [/math] [math] 64=64 [/math] [math] LS=RS [/math] [math] \text{Therefore proven} [/math] [math] b=9: (2) a=\sqrt{9}^3 [/math] [math] =3^3 [/math] [math] =27 [/math] [math] (1) 27^2=9^3 [/math] [math] 729=729 [/math] [math] LS=RS [/math] [math] \text{Therefore proven} [/math]
timo Posted June 5, 2012 Posted June 5, 2012 I would have considered 27^2 = 9^3 a proof for the claim, already. Or [math](x^3)^2 = (x^2)^3[/math] (in conjunction with the claim that there exists an x for which x^2 and x^3 exist). What's that fuzz about? 1
Greg H. Posted June 6, 2012 Posted June 6, 2012 [math] \text {Proof that } a^2=b^3 \text { has solutions}, a, b = I > 1 [/math] [math] a^2=b^3 (1) [/math] [math] \sqrt{a^2}=\sqrt{b^3} [/math] [math] a=b^\frac{3}{2} [/math] [math] a=\sqrt{b}^3 (2) [/math] [math] b=4: (2) a=\sqrt{4}^3 [/math] [math] =2^3 [/math] [math] =8 [/math] [math] (1) a^2=b^3 [/math] [math] 8^2=4^3 [/math] [math] 64=64 [/math] [math] LS=RS [/math] [math] \text{Therefore proven} [/math] [math] b=9: (2) a=\sqrt{9}^3 [/math] [math] =3^3 [/math] [math] =27 [/math] [math] (1) 27^2=9^3 [/math] [math] 729=729 [/math] [math] LS=RS [/math] [math] \text{Therefore proven} [/math] In a broader sense, I think you've basically proven that the solution set includes any a and b where [math] a=\sqrt{b}^3[/math] So a = 64 and b = 16 is also a solution, as is a = 125, b = 25, etc.
Joatmon Posted June 6, 2012 Posted June 6, 2012 (edited) or, if you like, if (x^3)^2=(x^2)^3 (as already shown by timo) then x^6=X^6. Therefore any whole number (X) to the power of 6 has a whole number square root (X^3) and a whole number cube root (X^2). Edited June 6, 2012 by Joatmon
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now