Jump to content

Recommended Posts

Posted

I was just messing around with integrals to see if I could derive a general solution of this integral:

 

[latex]I = \displaystyle \int \frac{dx}{\sqrt{c+bx+ax^2}}[/latex]

 

and I was wondering if anybody could confirm my result.

 

[latex]c+bx+ax^2 \Rightarrow c + a\left(x^2 + \frac{b}{a}x\right)[/latex]

 

[latex]c+a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right][/latex]

 

[latex]\Rightarrow \left(c-\frac{b^2}{4a}\right)+a\left(x+\frac{b}{2a}\right)^2[/latex]

 

[latex]\Rightarrow \displaystyle \int \frac{dx}{\sqrt{\left(c-\frac{b^2}{4a}\right)+a\left(x+\frac{b}{2a}\right)^2}}[/latex]

 

[latex]\Rightarrow \frac{1}{\sqrt{c-\frac{b^2}{4a}}} \displaystyle \int \frac{dx}{\sqrt{1+\left(\sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)\right)^2}}[/latex]

 

then let

 

[latex]\sinh t = \sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)[/latex]

 

[latex]\Rightarrow dx = \sqrt{\frac{c-\frac{b^2}{4a}}{a}} \hspace{2mm} d(\sinh t)[/latex]

 

and we know that

 

[latex]d(\sinh t) = \cosh t \; dt[/latex]

 

So, substituting these terms into the integral gives

 

[latex]\frac{1}{\sqrt{a}} \displaystyle \int \frac{\cosh t \; dt}{\sqrt{1 + \sinh^2 t}} \Rightarrow \frac{1}{\sqrt{a}} \displaystyle \int \frac{\cosh t \; dt}{\cosh t}[/latex]

 

[latex]\Rightarrow \frac{1}{\sqrt{a}}t + C[/latex]

 

[latex]\therefore I = \frac{1}{\sqrt{a}} \sinh^{-1} \left(\sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)\right)+C[/latex]

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.