grayfalcon89 Posted January 4, 2005 Posted January 4, 2005 Evaluate: [math]\sum^{49}_{k=1} (-1)^{k} \binom {99}{2k}[/math] Figure this out without using calculator at all.
uncool Posted March 22, 2005 Posted March 22, 2005 The answer should be (98 49) - 98 - 99. If I'm wrong, please pots it. -Uncool-
Algebracus Posted March 22, 2005 Posted March 22, 2005 Instead of the old problem, I want to first solve the general problem of finding a short-form of [MATH]S(n) = \sum^{n}_{k=0} (-1)^{k} \binom{2n+1}{2k}[/MATH], where [MATH]n[/MATH] is a natural number of any kind. The result of interest is [MATH]S(49) - 1[/MATH]. We start looking at the expression [MATH](1 - i)^m + (1 + i)^m[/MATH]. By the binomial formula, this can be written as [MATH]\sum^{m}_{k = 0} ((-i)^k + i^k) \binom{m}{k}[/MATH]. For all odd [MATH]k[/MATH] we have [MATH](-i)^k + i^k = 0[/MATH]. For all [MATH]k = 4l[/MATH] we have [MATH](-i)^k + i^k = 2[/MATH]. For all [MATH]k = 4l + 2[/MATH] we have [MATH](-i)^k + i^k = -2[/MATH]. Therefore, the sum we look upon can be rewritten as [MATH]2\binom{m}{0} - 2\binom{m}{2} + 2\binom{m}4 + ...[/MATH] Therefore, [MATH]2S(n) = (1 - i)^{2n + 1} + (1 + i)^{2n + 1}[/MATH]. Furthermore, we know that [MATH]1 - i = \sqrt{2} e^{\frac{7\pi}{4} i}[/MATH] and [MATH]1 + i = \sqrt{2} e^{\frac{\pi}{4} i}[/MATH], so [MATH]2S(n) = \sqrt{2}^{2n + 1}(e^{\frac{7(2n + 1)\pi}{4} i} + e^{\frac{(2n + 1)\pi}{4} i})[/MATH] [MATH]=\sqrt{2}^{2n + 1}(e^{\frac{-(2n + 1)\pi}{4} i} + e^{\frac{(2n + 1)\pi}{4} i})[/MATH]. We divide the cases into two; [MATH]n[/MATH] odd and [MATH]n[/MATH] even. In the first case, [MATH]2S(n) = \sqrt{2}^{2n + 1}(\cos \frac{3\pi}{4} + \cos \frac{-3\pi}{4} + i \sin \frac{3\pi}{4} + i \sin \frac{-3\pi}{4})[/MATH] [MATH]= -\sqrt{2}^{2n + 2} = -2^{n+1}[/MATH]. In the latter case, [MATH]2S(n) = \sqrt{2}^{2n + 1}(\cos \frac{\pi}{4} + \cos \frac{-\pi}{4} + i \sin \frac{\pi}{4} + i \sin \frac{-\pi}{4})[/MATH] [MATH]= \sqrt{2}^{2n + 2} = 2^{n+1}[/MATH]. By this we find [MATH]S(49) - 1 = -2^{49} - 1[/MATH].
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now