Spart Posted March 20, 2013 Posted March 20, 2013 Hello, I'm having a bit of difficulty calculating this limit. [latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{x+1}-\sqrt{x+7}\; }[/latex] [latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{+\infty +1}-\sqrt{+\infty +7}\; }[/latex] [latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{+\infty}-\sqrt{+\infty}\; }[/latex] [latex]\lim_{x\to+\infty }\frac{1}{\;+\infty-\infty \; }[/latex] Well this is where I'm stuck. Naturally the square root of infinity will always remain infinity however it results in an indeterminate form since positive infinity cannot be summed with negative infinity. According to my text book the answer should be [latex]-\infty[/latex] but I have no idea how to work it out.
Spart Posted March 20, 2013 Author Posted March 20, 2013 try rationalisation [latex]\lim_{x\to+\infty }\frac{1}{\; \sqrt{x+1}-\sqrt{x+7}\; } \times \frac{\sqrt{x+1}+\sqrt{x+7}}{\sqrt{x+1}+\sqrt{x+7}}[/latex] [latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\left ( \sqrt{x+1}-\sqrt{x+7} \right )\left ( \sqrt{x+1}+\sqrt{x+7} \right )}[/latex] [latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\sqrt{x+1}^{\: 2}-\sqrt{x+7}^{\: 2}}[/latex] [latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{\left ( x+1 \right )-\left ( x+7 \right )}[/latex] [latex]\lim_{x\to+\infty }\frac{\sqrt{x+1}+\sqrt{x+7}}{-6} =\frac{+\infty +\infty }{-6}=-\infty[/latex] Simple! Thank you!
Yash Posted March 21, 2013 Posted March 21, 2013 just remember that limits are generally applied in the last step.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now