mathmari Posted May 7, 2013 Posted May 7, 2013 (edited) Hi!!! I need some help at the following exercise... Let [MATH]B[/MATH] be a typical brownian motion with μ>0 and [MATH]x[/MATH] ε [MATH]R[/MATH]. [MATH] X_{t}:=x+B_{t}[/MATH]+μt, for each [MATH]t>=0[/MATH], a brownian motion with velocity μ that starts at [MATH]x[/MATH]. For [MATH]r[/MATH] ε [MATH]R[/MATH], [MATH]T_{r}[/MATH]:=inf{[MATH]s>=0:X_{s}=r[/MATH]} and φ([MATH]r[/MATH]):=exp(-2μr). Show that [MATH]M_{t}:=[/MATH]φ[MATH](X_{t})[/MATH] for t>=0 is martingale. Edited May 7, 2013 by mathmari
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now