lelianeli Posted June 4, 2013 Posted June 4, 2013 (edited) Fermat's proof. Fermat's Last Theorem.pdf Edited June 4, 2013 by lelianeli
daniton Posted June 4, 2013 Posted June 4, 2013 By the way I have tried to prove Fermat s Last Theorem from Pythagorean theorem.I didn't finish it completely just need more taught just not use such complicated number theory ...... my idea is very simple I try to find integers which satisfy Pythagorean theorem using general formula the prove that are not perfect square. what do you say??
Brett Nortje Posted June 8, 2013 Posted June 8, 2013 By the way I have tried to prove Fermat s Last Theorem from Pythagorean theorem.I didn't finish it completely just need more taught just not use such complicated number theory ...... my idea is very simple I try to find integers which satisfy Pythagorean theorem using general formula the prove that are not perfect square. what do you say?? There is no such thing as a perfect square. this only exists on computers, and, in application, will never be perfect. I say this because the square at least does minus from the points of the angles that outline it - imagine an angle that is perfect? to what degree, and, to what size? seeing as how we can go infinitely smaller, in theory, making a perfect square would only be like saying we can se that small, that is as small as it gets, yes?
Amaton Posted June 8, 2013 Posted June 8, 2013 There is no such thing as a perfect square. this only exists on computers, and, in application, will never be perfect. An interesting topic -- though irrelevant, it seems. I think daniton meant "perfect square" as in any [math]n\in\mathbb{Z}[/math] such that [math]\sqrt{n}\in\mathbb{Z}[/math] i.e. 1, 4, 9, 16, 25, ... Anyway, I don't understand the initial post. Is OP attempting to show Fermat's infamous unknown proof?
daniton Posted June 8, 2013 Posted June 8, 2013 There is no such thing as a perfect square. this only exists on computers, and, in application, will never be perfect. Hey, did you skip high school and get in to college?A "perfect square" is an integer whose root is also an integer. Now you know!!!
SamBridge Posted June 9, 2013 Posted June 9, 2013 Wasn't there already a proof? http://en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's_Last_Theorem
John Posted June 9, 2013 Posted June 9, 2013 (edited) There is a proof already, yes, given by Andrew Wiles. However, it involves some pretty advanced and modern mathematics. Fermat wrote in the margin of a copy of a book called Arithmetica that he had a "marvelous proof" of the conjecture that was too large to fit in the margin, but no one knows what it could have been. It would have almost certainly involved what today would be considered pretty elementary mathematics. It may be that the proof Fermat thought he'd discovered contained an error. But if not, then whoever discovers a simpler proof (assuming anyone ever does) using techniques that Fermat likely had access to will probably achieve some fame, at least in the mathematical community. Edited June 9, 2013 by John
imatfaal Posted June 13, 2013 Posted June 13, 2013 There is a proof already, yes, given by Andrew Wiles. However, it involves some pretty advanced and modern mathematics. Fermat wrote in the margin of a copy of a book called Arithmetica that he had a "marvelous proof" of the conjecture that was too large to fit in the margin, but no one knows what it could have been. It would have almost certainly involved what today would be considered pretty elementary mathematics. It may be that the proof Fermat thought he'd discovered contained an error. But if not, then whoever discovers a simpler proof (assuming anyone ever does) using techniques that Fermat likely had access to will probably achieve some fame, at least in the mathematical community. Exactly. And IIRC the proof also required several enormous and exhaustive computer searches of various topologies (any one of which could have flawed the proof); thus checkings Andrew Wiles' proof involved checking and re-running his computer code (it would be completely impossible to check this any other way as number of topologies were in the ten of millions) rather than a "simple" check of the mathematics and logic.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now