mathmari Posted June 9, 2013 Posted June 9, 2013 Hii!!! I hope someone can help me with the following exercise...!!! Let G=(V,E) be a directed graph with weight w: E->R, n=|V|. Let m( c )=1/k*sum(w(e_{i}), i=1,k) be the mean weight of a circle. Let m*=min(m( c )), the minimum of the mean weights of the circles of G. Is it correct to say that, since the minimum of the mean weight is 0 and not negative, there are no circles with negative weight? Or is there an other explanation that if m*=0 there are no circles with negative weight..??? And also, how could I explain that δ(s,v)=min(δ_{k}(s,v), o<=k<=n-1), where δ(s,v) is the weight of the lightest path from s to v, and δ_{k}(s,v) is the weight of the lightest path from s to v that contains exactly k vertices (when there is no path from s to v with k vertices δ_{k}(s,v)=infinity)??
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now