Widdekind Posted September 26, 2013 Share Posted September 26, 2013 is the following derivation correct (ignoring for simplicity's sake a few factors of c): for a single charged particle, instantaneously located at [math]\vec{r}[/math], in the Classical limit, the fields from said particle, at point [math]\vec{r}'[/math]: [math]\Phi(r') \propto \frac{q}{r}[/math] [math]r = \sqrt{ \left( \vec{r}' - \vec{r} \right) \circ \left( \vec{r}' - \vec{r} \right) }[/math] [math]\vec{A}(r') = \vec{v} \Phi(r')[/math] the potential generate the force fields: [math]\vec{E} = -\nabla \Phi - \frac{\partial \vec{A}}{\partial t} = -\nabla \Phi - \vec{a} \Phi - \vec{v} \frac{\partial \Phi}{\partial r} \frac{\partial r}{\partial t}[/math] [math]\frac{\partial r}{\partial t} = \frac{1}{2 r} \left( 2 \left( x' - x \right) \left( - \frac{\partial x}{\partial t} \right) + \cdots \right) = - \hat{r} \circ \vec{v}[/math] where [math]\hat{r}[/math] points away from the force-field generating particle, towards the other point. But [math]\hat{r} \frac{\partial \Phi}{\partial r} = \nabla \Phi[/math]. so [math]\vec{E}=-\nabla\Phi-\vec{a}\Phi+\vec{v}\left(\vec{v}\circ\nabla\Phi\right)[/math] [math]\vec{B} = \nabla \times \vec{A} = - \vec{v} \times \nabla \Phi[/math] [math]\vec{v}' \times \vec{B} = \nabla \Phi \left( \vec{v}' \circ \vec{v} \right) - \vec{v} \left( \vec{v}' \circ \nabla \Phi \right)[/math] the force felt by a test charge [math]q'[/math] at [math]\vec{r}'[/math]: [math]\vec{F}' = q' \left( \vec{E} + \vec{v}' \times \vec{B}\right)[/math] [math]\frac{\vec{F}'}{q'} = -\nabla \Phi \left( 1 - \left( \vec{v}' \circ \vec{v} \right) \right) - \vec{a} \Phi - \vec{v} \left( \left( \vec{v}' - \vec{v} \right) \circ \nabla \Phi \right)[/math] i think the above is equivalent to http://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_in_terms_of_potentials Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now