Orion1 Posted November 29, 2014 Share Posted November 29, 2014 (edited) This is my equation for the observable Universe mass, based upon the Cosmic Energy Inventory (CEI) parameters and the Hubble Space Telescope (HST) parameters in (SI) units.Universe observable parameters:Universe total observable radius:[math]R_u = 4.408 \cdot 10^{26} \; \text{m} \; \; \; (46.6 \cdot 10^{9} \; \text{ly})[/math]CEI stellar Baryon density:[math]\Omega_s = 0.00205[/math]HST observable stellar number:[math]N_s = 10^{22}[/math]Solar mass:[math]M_{\odot} = 1.989 \cdot 10^{30} \; \text{kg}[/math]Observable Universe mass:[math]\boxed{M_u = \frac{N_s M_{\odot}}{\Omega_s}}[/math][math]\boxed{M_u = 9.705 \cdot 10^{54} \; \text{kg}}[/math]Any discussions and/or peer reviews about this specific topic thread?Also, please be sure to vote on the thread to rate this topic. Reference:http://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Observable_universehttp://en.wikipedia.org/wiki/Dark_matterhttp://arxiv.org/pdf/astro-ph/0406095v2.pdf Edited November 29, 2014 by Orion1 Link to comment Share on other sites More sharing options...
Mordred Posted November 29, 2014 Share Posted November 29, 2014 You could add up the energy budget to check your numbers http://arxiv.org/pdf/astro-ph/0406095v2.pdf 1 Link to comment Share on other sites More sharing options...
Sensei Posted November 29, 2014 Share Posted November 29, 2014 You're making assumption that every star has the same mass as Sun and/or that Sun's mass is average star mass across entire observable Universe. 1 Link to comment Share on other sites More sharing options...
Strange Posted November 29, 2014 Share Posted November 29, 2014 Your figure seems to be about two orders of magnitude larger than other estimates: http://en.wikipedia.org/wiki/Observable_universe#Mass_of_ordinary_matter (I haven't gone through the "Extrapolation from number of stars" to work out where the difference might come from. Overestimating average star mass, would only seem to account for a factor of 2.) Link to comment Share on other sites More sharing options...
Orion1 Posted November 30, 2014 Author Share Posted November 30, 2014 (edited) The problems with the mass equation model in post #1:-the model presumes that everything in the Universe is composed of mass.-the model presumes that the masses of all the stars are equal and that the masses of heavy stars average with the light stars for a main sequence mass.Universe dark matter composition:[math]\Omega_{dm} = 0.23[/math]Universe baryonic matter composition:[math]\Omega_{b} = 0.045[/math]A compositional mass fraction is required to compensate for a Universe that is not composed entirely of mass.The stellar mass fraction is equivalent to the stellar compositional fraction divided by the total compositional mass fractions:[math]\boxed{\Omega_{sf} = \frac{\Omega_{s}}{\Omega_{dm} + \Omega_{b}}}[/math]A mass summation formula is required with an extensive stellar survey mass database in order to sum the masses of all the stars:[math]dM = \sum_{n \mathop = 1}^{N_s} m_n[/math]The astrophysical volume from which the stellar survey was obtained:[math]dV \leq V_u[/math]Observable Universe mass summation integration via substitution:[math]M_u = \rho_u V_u = \frac{4 \pi}{3 \Omega_{sf}} \left( \frac{dM}{dV} \right) R_u^3 = \frac{4 \pi R_u^3}{3 \Omega_{sf}} \left( \frac{\sum_{n \mathop = 1}^{N_s} m_n}{dV} \right)[/math]Observable Universe mass summation formula:[math]\boxed{M_u = \frac{4 \pi R_u^3}{3 \Omega_{sf}} \left( \frac{\sum_{n \mathop = 1}^{N_s} m_n}{dV} \right)}[/math]However, without an extensive stellar survey mass database, only average approximations are possible to calculate.HST observable stellar number:[math]N_s = 10^{22}[/math]Observable Universe mass:[math]M_u = \frac{N_s M_{\odot}}{\Omega_{sf}} = 6.597 \cdot 10^{54}[/math][math]\boxed{M_u = 6.597 \cdot 10^{54}}[/math]---Universe total observable radius:[math]R_u = 4.408 \cdot 10^{26} \; \text{m} \; \; \; (46.6 \cdot 10^{9} \; \text{ly})[/math]Radiation constant:[math]\alpha_{\gamma} = \frac{\pi^2 k_B^4}{15 \hbar^3 c^3}[/math]CMBR temperature at present time:[math]T_{\gamma} = 2.72548 \; \text{K}[/math]CMBR primeval thermal remnant composition:[math]\Omega_{\gamma} = 10^{-4.3}[/math]The CMBR primeval thermal remnant fraction is equivalent to the CMBR compositional fraction divided by the total compositional mass fractions:[math]\boxed{\Omega_{\gamma f} = \frac{\Omega_{\gamma}}{\Omega_{dm} + \Omega_{b}}}[/math]CMBR energy density:[math]\epsilon_{\gamma} = \alpha_{\gamma} T_{\gamma}^4[/math]Observable Universe total mass:[math]M_u = \frac{\epsilon_{\gamma} V_u}{c^2 \Omega_{\gamma f}} = \frac{4 \pi \epsilon_{\gamma} R_u^3}{3 c^2 \Omega_{\gamma f}} = 9.148 \cdot 10^{53} \; \text{kg}[/math] [math]\boxed{M_u = \frac{4 \pi \epsilon_{\gamma} R_u^3}{3 c^2 \Omega_{\gamma f}}}[/math] [math]\boxed{M_u = 9.148 \cdot 10^{53} \; \text{kg}}[/math] Any discussions and/or peer reviews about this specific topic thread?Also, please be sure to vote on the thread to rate this topic.Reference:http://en.wikipedia.org/wiki/Boltzmann_constanthttp://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constanthttp://en.wikipedia.org/wiki/Cosmic_microwave_backgroundhttp://star-www.dur.ac.uk/~csf/homepage/CosmicHistory_lectures/lecture_7-8_notes.pdfhttp://arxiv.org/pdf/astro-ph/0406095v2.pdf Edited November 30, 2014 by Orion1 Link to comment Share on other sites More sharing options...
Mordred Posted November 30, 2014 Share Posted November 30, 2014 (edited) Well I'm glad to see the cosmic inventory included in your links. It's rather extensive and detailed. Judging by your calcs and what I recall its in the right range. For an approximation Though I am still unclear what you are presenting that is new. Edited November 30, 2014 by Mordred Link to comment Share on other sites More sharing options...
Strange Posted November 30, 2014 Share Posted November 30, 2014 Also, please be sure to vote on the thread to rate this topic. OK. I have given it a rating of zero. Happy? Link to comment Share on other sites More sharing options...
Orion1 Posted November 30, 2014 Author Share Posted November 30, 2014 OK. I have given it a rating of zero. Happy? Negative, you would have encountered a rating singularity. 1 Link to comment Share on other sites More sharing options...
Strange Posted November 30, 2014 Share Posted November 30, 2014 Negative, you would have encountered a rating singularity. Link to comment Share on other sites More sharing options...
Orion1 Posted December 20, 2014 Author Share Posted December 20, 2014 Universe total observable radius:[math]R_u = 4.408 \cdot 10^{26} \; \text{m} \; \; \; (46.6 \cdot 10^{9} \; \text{ly})[/math]Radiation constant:[math]\alpha_{\gamma} = \frac{\pi^2 k_B^4}{15 \hbar^3 c^3}[/math]CMBR temperature at present time:[math]T_{\gamma} = 2.72548 \; \text{K}[/math]Cosmic neutrino background radiation temperature at present time:[math]T_{\nu} = 1.95 \; \text{K}[/math]Neutrino primeval thermal remnant composition:[math]\Omega_{\nu} = 10^{-2.9}[/math]Standard Model neutrino species effective number:[math]N_{\nu} = 3.046[/math]The neutrino primeval thermal remnant fraction is equivalent to the neutrino compositional fraction divided by the total compositional mass fractions:[math]\boxed{\Omega_{\nu f} = \frac{\Omega_{\nu}}{\Omega_{dm} + \Omega_{b}}}[/math]CMBR energy density:[math]\epsilon_{\gamma} = \alpha_{\gamma} T_{\gamma}^4[/math]Relativistic neutrino energy density integration via substitution:[math]\epsilon_{\nu} = \epsilon_{\gamma} \left[ 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\nu} \right] = \alpha_{\gamma} T_{\gamma}^4 \left[ 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\nu} \right][/math]Relativistic neutrino energy density:[math]\boxed{\epsilon_{\nu} = \alpha_{\gamma} T_{\gamma}^4 \left[ 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\nu} \right]}[/math]Observable Universe total mass:[math]M_u = \frac{\epsilon_{\nu} V_u}{c^2 \Omega_{\nu f}} = \frac{4 \pi \epsilon_{\nu} R_u^3}{3 c^2 \Omega_{\nu f}} = 6.161 \cdot 10^{52} \; \text{kg}[/math] [math]\boxed{M_u = \frac{4 \pi \epsilon_{\nu} R_u^3}{3 c^2 \Omega_{\nu f}}}[/math] [math]\boxed{M_u = 6.161 \cdot 10^{52} \; \text{kg}}[/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://en.wikipedia.org/wiki/Boltzmann_constanthttp://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constanthttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://star-www.dur.ac.uk/~csf/homepage/CosmicHistory_lectures/lecture_7-8_notes.pdfhttp://arxiv.org/pdf/astro-ph/0406095v2.pdfhttp://arxiv.org/pdf/hep-ph/0506164.pdf Link to comment Share on other sites More sharing options...
Orion1 Posted January 3, 2015 Author Share Posted January 3, 2015 (edited) A more accurate relativistic neutrino energy density formula...Universe total observable radius:[math]R_u = 4.408 \cdot 10^{26} \; \text{m} \; \; \; (46.6 \cdot 10^{9} \; \text{ly})[/math]Radiation constant:[math]\alpha_{\gamma} = \frac{\pi^2 k_B^4}{15 \hbar^3 c^3}[/math]CMBR temperature at present time:[math]T_{\gamma} = 2.72548 \; \text{K}[/math]Cosmic neutrino background radiation temperature at present time:[math]T_{\nu} = 1.95 \; \text{K}[/math]Neutrino primeval thermal remnant composition:[math]\Omega_{\nu} = 10^{-2.9}[/math]Standard Model neutrino species effective number:[math]N_{\nu} = 3.046[/math]The neutrino primeval thermal remnant fraction:[math]\boxed{\Omega_{\nu f} = \frac{\Omega_{\nu}}{\Omega_{dm} + \Omega_{b}}}[/math]Relativistic neutrino energy density:[math]\boxed{\epsilon_{\nu} = \alpha_{\gamma} T_{\gamma}^4 \left[ 1 + \frac{7}{8} \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu} \right]}[/math]Observable Universe total mass:[math]\boxed{M_u = \frac{4 \pi \epsilon_{\nu} R_u^3}{3 c^2 \Omega_{\nu f}}}[/math] [math]\boxed{M_u = 6.185 \cdot 10^{52} \; \text{kg}}[/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://en.wikipedia.org/wiki/Boltzmann_constanthttp://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_constanthttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://star-www.dur.ac.uk/~csf/homepage/CosmicHistory_lectures/lecture_7-8_notes.pdfhttp://arxiv.org/pdf/astro-ph/0406095v2.pdfhttp://arxiv.org/pdf/hep-ph/0506164.pdf Edited January 3, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Mordred Posted January 3, 2015 Share Posted January 3, 2015 As neutrinos are fermionic you may get a higher degree of approximation using the Fermi-Dirac statistic equation. http://en.m.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics I would also recommend seperating each species of neutrinos, calculating each seperately with the Fermi Dirac then totalling. The number of degrees of freedom of each species is part of the Fermi Dirac You can group the particle anti particle pairs just make sure you have that reflected in the degrees of freedom This will account for temperature changes due to neutrino interactions Link to comment Share on other sites More sharing options...
Mordred Posted January 4, 2015 Share Posted January 4, 2015 (edited) http://arxiv.org/abs/1212.6154 Neutrino mass from cosmology. Looks like they use the same formula. Edited January 4, 2015 by Mordred Link to comment Share on other sites More sharing options...
Orion1 Posted January 9, 2015 Author Share Posted January 9, 2015 (edited) Correction to the relativistic neutrino energy density equation on post #11.The total radiation energy density of the Universe is equivalent to the sum of the Cosmic Microwave Background Radiation energy density plus the Cosmic neutrino Background Radiation energy density.The total radiation energy density of the Universe:[math]\epsilon_r = \epsilon_{\gamma} + \epsilon_{\nu} = \epsilon_{\gamma} \left[ 1 + \frac{7}{8} \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu} \right] = \epsilon_{\gamma} + \epsilon_{\gamma} \left( \frac{7}{8} \right) \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu}[/math]Relativistic neutrino energy density integration via substitution:[math]\epsilon_{\nu} = \epsilon_{\gamma} \left( \frac{7}{8} \right) \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu} = \alpha_{\gamma} T_{\gamma}^4 \left( \frac{7}{8} \right) \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu} = \alpha_{\gamma} T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu}[/math]Relativistic neutrino energy density:[math] \boxed{\epsilon_{\nu} = \alpha_{\gamma} T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu}}[/math]Observable Universe total mass:[math]\boxed{M_u = \frac{4 \pi \epsilon_{\nu} R_u^3}{3 c^2 \Omega_{\nu f}}}[/math] [math]\boxed{M_u = 2.543 \cdot 10^{52} \; \text{kg}}[/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://arxiv.org/pdf/hep-ph/0506164.pdfhttp://arxiv.org/abs/1212.6154 Edited January 9, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted January 31, 2015 Author Share Posted January 31, 2015 (edited) Universe total observable radius:[math] R_u = 4.408 \cdot 10^{26} \; \text{m} \; \; \; (46.6 \cdot 10^{9} \; \text{ly}) [/math]Radiation constant:[math] \alpha_{\gamma} = \frac{\pi^2 k_B^4}{15 \hbar^3 c^3} [/math]Cosmic Microwave Background Radiation temperature at present time:[math] T_{\gamma} = 2.72548 \; \text{K} [/math]Cosmic Neutrino Background Radiation temperature at present time:[math] T_{\nu} = 1.95 \; \text{K} [/math]Cosmic Microwave Background Radiation primeval thermal remnant composition:[math] \Omega_{\gamma} = 10^{-4.3} [/math]Neutrino primeval thermal remnant composition:[math] \Omega_{\nu} = 10^{-2.9} [/math]Standard Model neutrino species effective number:[math] N_{\nu} = 3.046 [/math]The Universe total relic background radiation primeval remnant fraction is equivalent to the Cosmic Microwave Background Radiation compositional fraction plus the Cosmic Neutrino Background Radiation compositional fraction divided by the total compositional mass fractions.[math] \boxed{\Omega_{rf} = \frac{\Omega_{\gamma} + \Omega_{\nu}}{\Omega_{dm} + \Omega_{b}}} [/math]Cosmic Microwave Background Radiation energy density:[math] \epsilon_{\gamma} = \alpha_{\gamma} T_{\gamma}^4 [/math]Cosmic Neutrino Background Radiation energy density:[math] \boxed{\epsilon_{\nu} = \alpha_{\gamma} T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu}} [/math]The Universe total radiation energy density is equivalent to the sum of the Cosmic Microwave Background Radiation energy density plus the Cosmic Neutrino Background Radiation energy density.[math] \epsilon_r = \epsilon_{\gamma} + \epsilon_{\nu} = \epsilon_{\gamma} \left[ 1 + \frac{7}{8} \left( \frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\nu} \right] [/math]Observable Universe total mass:[math] \boxed{M_u = \frac{4 \pi \epsilon_{r} R_u^3}{3 c^2 \Omega_{r f}}} [/math][math] \boxed{M_u = 5.948 \cdot 10^{52} \; \text{kg}} [/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://en.wikipedia.org/wiki/Observable_universehttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Cosmic_microwave_backgroundhttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://arxiv.org/pdf/hep-ph/0506164.pdfhttp://arxiv.org/abs/1212.6154http://star-www.dur.ac.uk/~csf/homepage/CosmicHistory_lectures/lecture_7-8_notes.pdfhttp://arxiv.org/pdf/astro-ph/0406095v2.pdf Edited January 31, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Mordred Posted January 31, 2015 Share Posted January 31, 2015 (edited) You might look at the equivalent mass contribution of the cosmological constant. From the critical density formula it derives as roughly [latex] 10^{-29} [/latex] grams/cubic meter The Higgs field energy density should also be considered. I ran across an article at one time with its energy density. I'll try and see if I can track it down. Edited January 31, 2015 by Mordred Link to comment Share on other sites More sharing options...
Orion1 Posted February 1, 2015 Author Share Posted February 1, 2015 (edited) Hubble constant:[math] H_0 = 2.3 \cdot 10^{-18} \; \text{s}^{-1} [/math]Dark Energy compositional density parameter:[math] \Omega_{\Lambda} = 0.72 [/math]Cosmological Constant:[math] \Lambda = \frac{3 \Omega_{\Lambda} H_0^2}{c^2} [/math]Friedmann equations critical density:[math] \rho_c = \frac{3 H_0^2}{8 \pi G} [/math]Dark Energy mass density integration via substitution:[math]\rho_{\Lambda} = \Omega_{\Lambda} \rho_c = \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} [/math]Dark Energy mass density:[math] \boxed{\rho_{\Lambda} = \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G}} [/math][math] \boxed{\rho_{\Lambda} = 6.812 \cdot 10^{-27} \; \frac{\text{kg}}{\text{m}^3}} [/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://relativity.livingreviews.org/Articles/lrr-2001-1/download/lrr-2001-1Color.pdfhttp://en.wikipedia.org/wiki/Critical_density_%28cosmology%29#Density_parameterhttp://en.wikipedia.org/wiki/Hubble_constant#Hubble_timehttp://en.wikipedia.org/wiki/Hubble%27s_law#Matter-dominated_universe_.28with_a_cosmological_constant.29https://www.physicsforums.com/threads/friedmann-equation.281689/#post-2015381 Edited February 1, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Mordred Posted February 1, 2015 Share Posted February 1, 2015 Hubble constant: [math] H_0 = 2.3 \cdot 10^{-18} \; \text{s}^{-1} [/math] Dark Energy compositional density parameter: [math] \Omega_{\Lambda} = 0.72 [/math] Cosmological Constant: [math] \Lambda = \frac{3 \Omega_{\Lambda} H_0^2}{c^2} [/math] Friedmann equations critical density: [math] \rho_c = \frac{3 H_0^2}{8 \pi G} [/math] Dark Energy mass density integration via substitution: [math]\rho_{\Lambda} = \Omega_{\Lambda} \rho_c = \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} [/math] Dark Energy mass density: [math] \boxed{\rho_{\Lambda} = \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G}} [/math] [math] \boxed{\rho_{\Lambda} = 6.812 \cdot 10^{-27} \; \frac{\text{kg}}{\text{m}^3}} [/math] Any discussions and/or peer reviews about this specific topic thread? Reference: http://relativity.livingreviews.org/Articles/lrr-2001-1/download/lrr-2001-1Color.pdf http://en.wikipedia.org/wiki/Critical_density_%28cosmology%29#Density_parameter http://en.wikipedia.org/wiki/Hubble_constant#Hubble_time http://en.wikipedia.org/wiki/Hubble%27s_law#Matter-dominated_universe_.28with_a_cosmological_constant.29 https://www.physicsforums.com/threads/friedmann-equation.281689/#post-2015381 Looks good bang on the money in this post Link to comment Share on other sites More sharing options...
Orion1 Posted February 2, 2015 Author Share Posted February 2, 2015 (edited) Friedmann equations critical mass integration via substitution:[math] M_c = \rho_c V_u = \left( \frac{3 H_0^2}{8 \pi G} \right) \left( \frac{4 \pi R_u^3}{3} \right) = \frac{H_0^2 R_u^3}{2 G} [/math]Friedmann equations critical mass:[math] \boxed{M_c = \frac{H_0^2 R_u^3}{2 G}} [/math][math] \boxed{M_c = 3.396 \cdot 10^{54} \; \text{kg}} [/math]Observable Universe total mass:[math] \boxed{M_u = \frac{4 \pi R_u^3}{3} \left( \frac{\epsilon_r}{c^2 \Omega_{rf}} + \rho_{\Lambda} \right)} [/math][math] \boxed{M_u = 2.504 \cdot 10^{54} \; \text{kg}} [/math]Any discussions and/or peer reviews about this specific topic thread?Reference:http://relativity.livingreviews.org/Articles/lrr-2001-1/download/lrr-2001-1Color.pdfhttp://en.wikipedia.org/wiki/Critical_density_%28cosmology%29#Density_parameterhttp://en.wikipedia.org/wiki/Hubble%27s_law#Matter-dominated_universe_.28with_a_cosmological_constant.29 Edited February 2, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted April 5, 2015 Author Share Posted April 5, 2015 The Higgs field energy density should also be considered. I ran across an article at one time with its energy density. I'll try and see if I can track it down. I am unable to locate either a Standard Model theoretical mathematical prediction value or an astrophysical measured value for the cosmological Higgs field energy density. The closest scientific information that I was able to locate is located in reference 1. Reference: The New Physics - Paul Davies - page 42 https://books.google.com/books?id=akb2FpZSGnMC&pg=PA42&lpg=PA42#v=onepage&q&f=false Link to comment Share on other sites More sharing options...
Mordred Posted April 5, 2015 Share Posted April 5, 2015 The paper I had, has the wrong Higgs mass. I'm still looking but you may have already accounted for it, if the Higgs field is responsible for the cosmological constant. Most of the papers I looked at ties the Higgs to the cosmological constant, but I've been unable to find a definite separation of the Higgs field itself from Lambda 1 Link to comment Share on other sites More sharing options...
Orion1 Posted April 17, 2015 Author Share Posted April 17, 2015 (edited) Observable Universe total mass integration via substitution: [math] M_u = \rho_u V_u = \frac{4 \pi R_u^3}{3} \left( \frac{\epsilon_r}{c^2 \Omega_{rf}} + \rho_{\Lambda} \right) = \frac{4 \pi R_u^3}{3} \left[ \frac{\pi^2 k_B^4}{15 \hbar^3 c^5} \left( T_{\gamma}^4 + T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu} \right) \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{\gamma} + \Omega_{\nu}} \right) + \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} \right] [/math] Observable Universe total mass: [math] \boxed{M_u = \frac{4 \pi R_u^3}{3} \left[ \frac{\pi^2 k_B^4}{15 \hbar^3 c^5} \left( T_{\gamma}^4 + T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu} \right) \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{\gamma} + \Omega_{\nu}} \right) + \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} \right]} [/math] [math] \boxed{M_u = 2.504 \cdot 10^{54} \; \text{kg}} [/math] Any discussions and/or peer reviews about this specific topic thread? Reference: http://www.scienceforums.net/topic/86694-observable-universe-mass/ Edited April 17, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted June 9, 2015 Author Share Posted June 9, 2015 (edited) Observable Universe average stellar mass: (ref. 1, pg. 20) [math]M_a = 0.6 \cdot M_{\odot}[/math] CEI stellar Baryon density: (ref. 2, pg. 3) [math]\Omega_s = (\Omega_{ms} + \Omega_{wd} + \Omega_{ns}) = 0.00246[/math] Observable Universe total mass from average stellar mass: (ref. 3) [math]M_{u,1} = \frac{N_s M_a}{\Omega_{sf}} = N_s M_a \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{s}} \right)[/math] Observable Universe total mass from cosmic background radiation: (ref. 4) [math]M_{u,2} = \frac{4 \pi R_u^3}{3} \left( \frac{\epsilon_r}{c^2 \Omega_{rf}} + \rho_{\Lambda} \right) = \frac{4 \pi R_u^3}{3} \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right][/math] Observable Universe total mass from average stellar mass is equivalent to Observable Universe total mass from cosmic background radiation: [math]\boxed{M_{u,1} = M_{u,2}}[/math] Integration via substitution: [math]N_s M_a \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{s}} \right) = \frac{4 \pi R_u^3}{3} \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right][/math] Solve for total observable stellar number [math]N_s[/math]. Observable Universe total observable stellar number: [math]\boxed{N_s = \frac{4 \pi R_u^3}{3 \cdot 0.6 \cdot M_{\odot}} \left( \frac{\Omega_{s}}{\Omega_{dm} + \Omega_{b}} \right) \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right]}[/math] [math]\boxed{N_s = 1.877 \cdot 10^{22} \; \; \; \text{stars}}[/math] Hubble Space Telescope (HST) stellar survey Observable Universe total observable stellar number: [math]\boxed{N_s = 1.000 \cdot 10^{22} \; \; \; \text{stars}}[/math] Any discussions and/or peer reviews about this specific topic thread? Reference: On The Mass Distribution Of Stars...: http://www.doiserbia.nb.rs/img/doi/1450-698X/2006/1450-698X0672017N.pdf The Cosmic Energy Inventory: http://arxiv.org/pdf/astro-ph/0406095v2.pdf Observable Universe total mass from stellar mass: http://www.scienceforums.net/topic/86694-observable-universe-mass/#entry839572 Observable Universe total mass from cosmic background radiation: http://www.scienceforums.net/topic/86694-observable-universe-mass/page-2#entry864237 Edited June 9, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted July 4, 2015 Author Share Posted July 4, 2015 (edited) Observable Universe total galaxy number: (ref. 4, 5, 6) [math]N_g = 1.7 \cdot 10^{11} \; \; \; \text{galaxies}[/math] Milky Way galaxy mass: (ref. 1, pg. 1) [math]M_{mw} = 1.26 \cdot 10^{12} \cdot M_{\odot}[/math] Observable Universe average galaxy mass: [math]M_a = f_{a} \cdot M_{mw}[/math] Dimensionless average galaxy mass fraction: [math]f_{a}[/math] CEI galaxy baryon density: (ref. 2, pg. 3) [math]\Omega_b = 0.045[/math] Galaxy compositional fraction is equivalent to baryon rest mass compositional fraction: [math]\boxed{\Omega_g = \Omega_b}[/math] The total Observable Universe galactic mass fraction is equivalent to the baryon rest mass fraction divided by the total compositional mass fractions. [math]\boxed{\Omega_{gf} = \left( \frac{\Omega_{b}}{\Omega_{dm} + \Omega_{b}} \right)}[/math] Observable Universe total mass from average galaxy mass: [math]M_{u,1} = \frac{N_g M_a}{\Omega_{gf}} = N_g M_a \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{b}} \right)[/math] Observable Universe total mass from cosmic background radiation: (ref. 3) [math]M_{u,2} = \frac{4 \pi R_u^3}{3} \left( \frac{\epsilon_r}{c^2 \Omega_{rf}} + \rho_{\Lambda} \right) = \frac{4 \pi R_u^3}{3} \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right][/math] Observable Universe total mass from average galaxy mass is equivalent to Observable Universe total mass from cosmic background radiation: [math]\boxed{M_{u,1} = M_{u,2}}[/math] Integration via substitution: [math]N_g M_a \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{b}} \right) = \frac{4 \pi R_u^3}{3} \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right][/math] Solve for average galaxy mass fraction: [math]f_{a}[/math]. Observable Universe average galaxy mass fraction: [math]\boxed{f_a = \frac{4 \pi R_u^3}{3 N_g M_{mw}} \left( \frac{\Omega_{b}}{\Omega_{dm} + \Omega_{b}} \right) \left[ \frac{\epsilon_r}{c^2} \left( \frac{\Omega_{dm} + \Omega_b}{\Omega_{\gamma} + \Omega_{\nu}} \right)+ \rho_{\Lambda} \right]}[/math] Observable Universe dimensionless average galaxy mass fraction: [math]\boxed{f_a = 0.962}[/math] Any discussions and/or peer reviews about this specific topic thread? Reference: Mass models of the Milky Way:http://arxiv.org/pdf/1102.4340v1 The Cosmic Energy Inventory:http://arxiv.org/pdf/astro-ph/0406095v2.pdf Observable Universe total mass from cosmic background radiation:http://www.scienceforums.net/topic/86694-observable-universe-mass/page-2#entry864237 A Map of the Universe: http://arxiv.org/pdf/astro-ph/0310571v2 Galaxy: https://en.wikipedia.org/wiki/Galaxy List of galaxies: https://en.wikipedia.org/wiki/List_of_galaxies Edited July 4, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted July 11, 2015 Author Share Posted July 11, 2015 (edited) Photon radiation constant: [math]\alpha_{\gamma} = \frac{\pi^2 k_B^4}{15 \hbar^3 c^3}[/math] Scalar particle radiation constant is equivalent to one-half the photon radiation constant: (ref. 1, pg. 363) [math]\alpha_{\phi} = \frac{\alpha_{\gamma}}{2} = \frac{\pi^2 k_B^4}{30 \hbar^3 c^3}[/math] Scalar particle radiation constant: (ref. 1, pg. 363) [math]\boxed{\alpha_{\phi} = \frac{\pi^2 k_B^4}{30 \hbar^3 c^3}}[/math] Scalar particle radiation temperature is equivalent to cosmic neutrino background radiation temperature: (ref. 1, pg. 363) [math]\boxed{T_{\phi} = T_{\nu}}[/math] Scalar particle radiation energy density: [math]\boxed{\epsilon_{\phi} = \alpha_{\phi} T_{\phi}^4}[/math] Average scalar particle energy: (ref. 2, pg. 4) [math]\boxed{E_{\phi} = \frac{3 k_B T_{\phi}}{2}}[/math] The total average scalar particle radiation number density is equivalent to the scalar particle radiation energy density divided by the average scalar particle energy: [math]n_{\phi} = \frac{\epsilon_{\phi}}{E_{\phi}} = \frac{2 \epsilon_{\phi}}{3 k_B T_{\phi}} = \frac{2 \alpha_{\phi} T_{\phi}^3}{3 k_B} = \frac{\pi^2}{45} \left( \frac{k_B T_{\phi}}{\hbar c} \right)^3[/math] Total average scalar particle radiation number density: [math]\boxed{n_{\phi} = \frac{\pi^2}{45} \left( \frac{k_B T_{\phi}}{\hbar c} \right)^3}[/math] The total Observable Universe dark matter fraction is equivalent to the dark matter compositional fraction divided by the total compositional mass fractions: [math]\boxed{\Omega_{dmf} = \left( \frac{\Omega_{dm}}{\Omega_{dm} + \Omega_{b}} \right)}[/math] Observable Universe total density derived from dark matter scalar particles integration via substitution: [math]\rho_{u, \phi} = \frac{n_{\phi} m_{\phi}}{\Omega_{dmf}} = n_{\phi} m_{\phi} \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{dm}} \right) = \frac{\pi^2 m_{\phi}}{45} \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{dm}} \right) \left( \frac{k_B T_{\phi}}{\hbar c} \right)^3[/math] Observable Universe total density derived from dark matter scalar particles: [math]\boxed{\rho_{u, \phi} = \frac{\pi^2 m_{\phi}}{45} \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{dm}} \right) \left( \frac{k_B T_{\phi}}{\hbar c} \right)^3}[/math] Observable Universe total density derived from cosmic background radiation and dark energy: [math]\boxed{\rho_{u, \gamma , \Lambda} = \left[ \frac{\pi^2 k_B^4}{15 \hbar^3 c^5} \left( T_{\gamma}^4 + T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu} \right) \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{\gamma} + \Omega_{\nu}} \right) + \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} \right]}[/math] Observable Universe total density derived from dark matter scalar particles is equivalent to the Observable Universe total density derived from cosmic background radiation and dark energy: [math]\boxed{\rho_{u, \phi} = \rho_{u, \gamma , \Lambda}}[/math] Integration via substitution: [math]\frac{\pi^2 m_{\phi}}{45} \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{dm}} \right) \left( \frac{k_B T_{\phi}}{\hbar c} \right)^3 = \left[ \frac{\pi^2 k_B^4}{15 \hbar^3 c^5} \left( T_{\gamma}^4 + T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu} \right) \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{\gamma} + \Omega_{\nu}} \right) + \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} \right][/math] Solve for dark matter scalar particle mass: [math]m_{\phi}[/math] Dark matter scalar particle mass: [math]\boxed{m_{\phi} = \frac{45}{\pi^2} \left( \frac{\Omega_{dm}}{\Omega_{dm} + \Omega_{b}} \right) \left( \frac{\hbar c}{k_B T_{\phi}} \right)^3 \left[ \frac{\pi^2 k_B^4}{15 \hbar^3 c^5} \left( T_{\gamma}^4 + T_{\nu}^4 \left( \frac{7}{8} \right) N_{\nu} \right) \left( \frac{\Omega_{dm} + \Omega_{b}}{\Omega_{\gamma} + \Omega_{\nu}} \right) + \frac{3 \Omega_{\Lambda} H_0^2}{8 \pi G} \right]}[/math] Dark matter scalar particle mass: [math]\boxed{m_{\phi} = 4.309 \cdot 10^{-35} \; \; \text{kg}}[/math] Any discussions and/or peer reviews about this specific topic thread? Reference: Neutrinos in Particle Physics, Astrophysics and Cosmologyhttps://books.google.ca/books?id=mRGThuuYHgsC&pg=PA363#v=onepage&q&f=false PHYS 390 Lecture 13 - Simon Fraser Universityhttp://www.sfu.ca/~boal/390lecs/390lec13.pdf The Cosmic Energy Inventory:http://arxiv.org/pdf/astro-ph/0406095v2.pdf Dark Matter - Wikipedia https://en.wikipedia.org/wiki/Dark_matter Edited July 11, 2015 by Orion1 Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now