Jump to content

Recommended Posts

Posted (edited)

I need help with this:

I need some explanation when it comes to dealing with partial fractions. [math]\frac{7x+19}{(x+1)(x+5)}[/math] into simpler fractions.[math]\frac{7x+19}{(x+1)(x+5)}=\frac{A}{(x+1)}+\frac{B}{(x+5)}[/math]

Why did[math]\frac{7x+19}{(x+1)(x+5)}[/math] become equal to [math]\frac{A}{(x+1)}+\frac{B}{(x+5)}[/math]?

Edited by Chikis
Posted (edited)

It's not so much that it has become equal but rather that you are supposing it is equal. Having supposed they are equal the task is then to find some A and B which satisfy the equality. It's not necessarily the case that there are solutions for A and B that make the equations equal, in which case the supposition would be mistaken.

Edited by Prometheus
Posted (edited)

Well when you are adding two fractions with different denominators you multiply each fraction top and bottom by the denominator of the other fraction so

 

[latex]\frac{a}{b}+\frac{b}{c} = \frac{ac}{bc}+\frac{bb}{bc} = \frac{ac+bc}{bc}[/latex]

 

If you are trying to work the equation back to A+B it isn't really possible. For instance there is two possible values for 7x being

 

[latex]\frac{7-\frac{7}{x+5}}{x+1} [/latex] and [latex]\frac{7-\frac{7}{x+1}}{x+1}[/latex]

Edited by fiveworlds
Posted (edited)

Ok, solving

[math]\frac{7x+19}{(x+1)(x+5)}=\frac{A}{(x+1)}+\frac{B}{(x+5)}[/math]

[math]\rightarrow[/math]

[math]\frac{A(x+5)+B(x+1)}{(x+1)(x+5)}=\frac{7x+19}{1}[/math]

How does this give rise to[math]7x+19=A(x+5)+B(x+1)[/math]

Edited by Chikis
Posted

x+1 and x+ 5 are common denominators of the fraction. That allows you to easily manipulate the equation

 

You want to rewrite the right-hand side as [math]A(x+5)/(x+1)(x+5) + B(x+1)/(x+1)(x+5)[/math]

 

All you have done is multiply each term by 1

 

Now the denominator for the whole thing is the same, so it cancels and you are left with the equation in question

Posted

The reason you cannot see how it gives rise to your third line (which is correct) is that your second line has a mistake (check the denominator on the RHS). Correct this mistake and you'll see the equality in the third.

Posted

[math]\frac{A(x+5)+B(x+1)}{(x+1)(x+5)}=\frac{7x+19}{(x+5)(x+1)}[/math] Could this one be right? Is the right hand side correct now?

Posted

Yep. You might be able to just see the equality of the numerators now, or you might want to multiply both sides by the denominator to make it explicit.

Posted

[math]\frac{A(x+5)+B(x+1)}{(x+1)(x+5)}=\frac{7x+19}{(x+5)(x+1)}[/math]

Ok! Multiplying the left and right hand side by the denominator, we have

[math]A(x+5)+B(x+1)=7x+19[/math] What happens next?

Posted

Well, A and B are constants, but x is a variable - so we can vary it as we like. Can you think of any particular value(s) of x that might be of help in solving this equation?

Posted

Well, A and B are constants, but x is a variable - so we can vary it as we like. Can you think of any particular value(s) of x that might be of help in solving this equation?

 

 

No, you solve for A and B, so that the original equation is true for any x (except where it diverges). You have 2 equations and 2 unknowns.

Posted

Yes, but there are particular values of x (i.e. the roots - of which there are two here) for which it is often easier to see the values of A and B.

Posted

Yes, but there are particular values of x (i.e. the roots - of which there are two here) for which it is often easier to see the values of A and B.

At those values the equation doesn't work.

Posted (edited)

Well, A and B are constants, but x is a variable - so we can vary it as we like. Can you think of any particular value(s) of x that might be of help in solving this equation?

Based on the examples I have seen so far, to find A we take that [math]x=-1[/math]

So [math]7x-1+19=A(-1+5)+B(-1+1)[/math]

[math]\rightarrow[/math] [math]12=4A+0[/math]

[math]\rightarrow[/math][math]A=3[/math]

To find B, we take that [math]x=-5[/math]

So [math]7x-5+19=A(-5+5)+B(-5+1)[/math]

[math]\rightarrow[/math] [math]-35+19=0-4B[/math]

[math]\rightarrow[/math] [math]-16=-4B[/math]

[math]\rightarrow[/math] [math]B=+4[/math]

Thus,

[math]\frac{7x+19}{(x+1)(x+5)}=\frac{3}{(x+1}+\frac{4}{(x+5)}[/math]

Is my work correct?

Edited by Chikis
Posted

Based on the examples I have seen so far, ....

[math]\frac{7x+19}{(x+1)(x+5)}=\frac{3}{(x+1}+\frac{4}{(x+5)}[/math]

Is my work correct?

 

Always but always multiply back out to check whether it is correct

Posted

Do the reverse - you have just used simultaneous equations to figure out two numbers. Put the numbers back in where your A and B were and check that it comes out correctly

Posted (edited)

[math]\frac{3}{x+1}+\frac{4}{x+5}[/math]

[math]=\frac{3(x+5)+4(x+1)}{(x+1)(x+5)}[/math]

[math]=\frac{3x+15+4x+4}{(x+1)(x+5)}[/math]

[math]=\frac{7x+19}{(x+1)(x+5)}[/math] If the above is what you meant, I have done it and seen that it came out correctly. Thank you.

Edited by Chikis

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.