Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Jump to content

Recommended Posts

Posted
  Quote
Okay' date=' can someone help me with this little puppy?

[math']\lim_{x\to0}(\frac{1}{sin x}-\frac{1}{x})[/math]

Intuitively, as x\to0, sin x \approx x, therefore, the limit should be 0 .

 

At the moment, I'll just give you a hint. If you combine the two fractions, you get \lim_{x\to0}{\frac{x-sin x}{x sin x}}. This is an indeterminate form (namely \frac{0}{0}), so you can apply L'Hopital's rule. You'll need to apply it twice, but you'll end up getting that the limit is 0 .

 

If you haven't learned L'Hopital's rule yet, mention so in a post, and I'll try to compute the limit without using it.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.