Jump to content

Infinitesimal Circular Motion generating Zeeman Effects and Spin-Orbit Coupling


Recommended Posts

Posted
[math]\int \int \int_V \nabla \times F \cdot dV = \int \int_S F \cdot dS[/math]


Stokes theorem states


[math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} F \cdot dr[/math]


Greens theorem is a special case of Stokes theorem.


force is


[math]F = \frac{\partial U(r)}{\partial r}[/math]


substitution gives


[math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} \frac{\partial U(r)}{\partial r} \cdot dr[/math]


As you can see it has dimensions of energy.


Consider the magnetic field now


[math]B = \frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]


Plugging in only part of the magnetic field expression [math]\frac{\hbar}{emc^2} \frac{1}{r}[/math]


[math]\int \int_{S} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dS] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dr[/math]


working from the last equation, performing the integral over the volume this time will yield



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]


Since this is just essentially a magnetic field times a surface, we have a magnetic flux


[math]\Phi = \int \int_S B \cdot dS = \int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



we should obtain a quantization



[math]\hbar = e\Phi = \frac{e}{2\pi} \int \int_S B \cdot dS = \frac{1}{2\pi} \int \int \int_{V} \frac{\hbar}{mc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \frac{1}{2\pi}\oint_{\partial S} \frac{\hbar}{mc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



It should be noted that the Gauss law for magnetism implies that our flux' date=' if over a closed surface [math']S[/math] is zero:



[math]\Phi = \int \int_S B \cdot dS = \int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS = 0[/math]



From this equation, we can rearrange to find [math]\frac{dS}{dV}[/math] which is a length squared term over a length cubed term, which yields an inverse length we will call the radius, which will imply an equation for magnetism of the form:


[math]\mathbf{B} = \int \int \int_{V} \frac{\hbar}{emc^2} \cdot [\nabla \times F][/math]


(we will show why soon). We can compare the physics of this equation with another magnetic term


[math]\mathbf{B} = \frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]



divide volume



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot \frac{dS}{dV}[/math]



Surface over volume is equivalent to [math]\frac{dS}{dV} \equiv \frac{r^2}{r^3} = \frac{1}{r}[/math] so we have



[math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r^2} \frac{\partial U(r)}{\partial r}[/math]



We have two terms of the inverse on both sides we can cancel as well to give us a new statement and proves the assertion above of a magnetic field equation:



[math]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



And in fact, by knowing the relationship of the potential [math]\mathbf{A}[/math] with the magnetic field as



[math]\mathbf{B} = \nabla \times \mathbf{A}[/math]



then the inverse operator is acting on the magnetic field in an analagous way to the circular gauge [math]\mathbf{A} = \mathbf{B} \times r[/math], as



[math]\mathbf{A} = (\nabla \times)^{-1}\mathbf{B} = \frac{\hbar F}{emc^2} = (\nabla \times)^{-1}\frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



The term [math]\frac{\hbar F}{emc^2}[/math] is a bit obscure - what is it? The force over energy can be though of as the inverse of the energy divided by a force which is


[math]\frac{E}{F} = \frac{1}{2} \frac{v^2}{a}[/math]


So


[math]F = \frac{E}{\frac{1}{2} v t} = \frac{2E}{v t}[/math]


So Force is the twice rate of change of Energy with respect to the velocity multiplied by time.


What's the inverse of


[math]\frac{E}{F} = \frac{1}{2} \frac{v^2}{a}[/math]


simplify, rearrange. Simple, gives:



[math]\frac{F}{E} = \frac{2a}{v^2}[/math]



This gives us the relationship


[math]\frac{2a \hbar }{e c^2}[/math]


and you can simplify this all the way now, by noticing the action is an angular momentum times a length term, we finally have



[math]\frac{2Ma c R}{e c^2} = \frac{2F R}{e c} = \frac{2mc^2}{e c} = \frac{2mc}{e} = \frac{2p}{e}[/math]



It may be of interest to note for any further investigations, that this has a dimension of rigidity [math]\mathbf{R}[/math] we can be shown via the equation:



[math]\mathbf{R} = \mathbf{B} r_g = \frac{p}{e}[/math]



where [math]r_g[/math] is the gyroradius (the radius associated to circular motion). It becomes more obvious that



[math]\mathbf{A} = (\nabla \times)^{-1}\mathbf{B} = \frac{\hbar F}{emc^2} = (\nabla \times)^{-1}\frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math]



... Is right, when you consider the momentum is in fact the electrokinetic momentum given by [math]e\mathbf{A} = p[/math]. Now it seems a bit strange to me I have one source claiming momentum over charge is a rigidity - but those dimensions work out when you notice [math]\mathbf{A}[/math] has the same dimensions of [math]\frac{p}{e}[/math] in face of the electrokinetic momentum which is known as [math]e\mathbf{A} = p[/math]. Anyway moving on.



[math]]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



rearranging gives



[math]e\mathbf{B} = \frac{\hbar}{mc^2} \cdot [\nabla \times F] = \frac{\hbar}{mc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



relaxing all but primary action terms to the other notations, [math]L[/math] or [math]S[/math], we have distributing the action and then dividing a mass we have now a Zeeman energy interaction term, which will then justify the appearance of a new term in the equation


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


Two equations were of particular interest as:


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


We didn't have to do much to get from



[math]\mathbf{B} = \frac{\hbar}{emc^2} \cdot [\nabla \times F] = \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]



We can change the central potential energy [math]U(r)[/math] for a screened Coulomb potential (aka. the Yukawa Potential) and this would give



[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{Gm}{r^2} e^{-kr}[/math]



This gives us something alternative to work with. It's not unusual to find a Yukawa term, in a central potential.



A centripetal force is


[math]F = m \omega^2 R[/math]


In which [math]\omega[/math] is the angular velocity.


Equating Newtons classical gravitational force equation with the clasical centripetal force we have


[math]\frac{Gm^2}{R^2} = m \omega^2 R[/math]


simplifying and rearranging we have the term


[math]\omega^2 = \frac{Gm}{R^3}[/math]


which simplifies the term [math]\frac{1}{r} \frac{Gm}{r^2}[/math], so we replace and we have


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \omega^2 e^{-kr}[/math]


we found:


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r}[/math]


And I showed the correct derivation for the second part as


[math]\omega^{2} = \frac{L^2}{m^2R^4} = \frac{1}{mR} \frac{\partial U}{\partial r}[/math]


multiply through by mass we have


[math]m \omega^{2} = \frac{L^2}{mR^4} = \frac{1}{R} \frac{\partial U}{\partial r}[/math]



Now, in other previous equations, I was able to derive the following:


[math]e\mathbf{B}r^2 = mvR = L[/math]


and


[math]e\mathbf{B} = \frac{L}{R^2}[/math]


and to match this with


[math]m \omega^{2} = \frac{L^2}{mR^4} = \frac{\partial U}{r \partial r}[/math]


distribute an action term


[math]e\mathbf{B} \hbar = \frac{L^2}{R^2}[/math]


dividing off [math]mR^2[/math] gives


[math]\frac{e\mathbf{B}\hbar}{mR^2} = \frac{L^2}{mR^4}[/math]


which now fits this term:


[math]\frac{L^2}{mR^4} = \frac{\partial U}{r \partial r}[/math]


Using the correct substitution for [math](1/r \cdot U/r)[/math] now, which is [math]\frac{e\mathbf{B}\hbar}{mR^2}[/math], substitution is now


[math]eR \mathbf{E} - \frac{e\mathbf{B}\hbar}{m} = \frac{L \cdot S}{m^2c^2} \cdot [\nabla \times F] = \frac{L \cdot S}{m^2c^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} = \frac{L \cdot S}{m^2c^2}\frac{e\hbar}{mR^2}[ \nabla \times \mathbf{A}][/math]


where [math]\nabla \times \mathbf{A}[/math] is the circular gauge, equivalent of magnetic field.

Posted

!

Moderator Note

 

you are Reiku, Gareth Lee Meredith, Gavin Meredith, QuantumClue, Graviphoton and many other noms de plume. You have already been banned on this site on numerous occasions - the opening of sockpuppet accounts is also not allowed.

Thread locked. Account Closed.

 

Guest
This topic is now closed to further replies.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.